ON THE COMPLETENESS OF THE LUCAS SEQUENCE

D. E. DAYKIN

University of Reading, England

It is well known that the Lucas sequence

$$
\mathrm{L}_{0}, \quad \mathrm{~L}_{1}, \quad \mathrm{~L}_{2}, \cdots=2,1,3, \cdots
$$

is complete. It is easy to see that if $0 \leq m<n$, the integer $L_{n+1}-1$ can't be represented as a sum of distinct L_{i} with $i \neq m, n$. Thus $\left\{L_{j}\right\}$ is not complete after the removal of two a rbitrary terms L_{m}, L_{n}. We will also show that the sequence is complete after the removal of any one term L_{n} with $n \geq$ 2.

Let N be a positive integer. It is well known that N is a (maximal) sum of $L_{i}^{\prime} s$, that is,
(1) $\quad N=L_{i_{1}}+L_{i_{2}}+\cdots+L_{i_{\beta}}$ with $\left\{\begin{array}{l}\mathrm{i}_{1} \geq 0 \text { and } \\ \mathrm{i}_{\nu+1}-\mathrm{i}_{\nu} \geq 2 \text { for } 1 \leq \nu<\beta .\end{array}\right.$

We suppose L_{n} is one of the terms in the representation (1), for otherwise we have nothing to show, say $\mathrm{n}=\mathrm{i}_{\alpha} \leq \mathrm{i}_{\beta}$. Then
(2)

$$
\begin{aligned}
\mathrm{M} & =\mathrm{L}_{\mathrm{i}_{1}}+\mathrm{L}_{\mathrm{i}_{2}}+\cdots+\mathrm{L}_{\mathrm{i}_{\alpha} \leq} \leq \mathrm{L}_{\mathrm{n}}+\mathrm{L}_{\mathrm{n}-2}+\cdots+\mathrm{L}_{\mathrm{k}}+\mathrm{L}_{0} \\
& =\left\{\begin{array}{l}
\mathrm{L}_{\mathrm{n}+1}+1 \text { and } \mathrm{k}=2 \text { if } \mathrm{n} \text { is even } \\
\mathrm{L}_{\mathrm{n}+1}-1 \text { and } \mathrm{k}=3 \text { if } \mathrm{n} \text { is odd. }
\end{array}\right.
\end{aligned}
$$

If $M=L_{n+1}+1$, we replace the sum (2) for M by $L_{1}+L_{n+1}$ in (1). If M $=L_{n+1}$ we replace the sum (2) for M by L_{n+1} in (1). Observe that L_{n+1} does not appear in (1). If $M \leq L_{n+1}-1$, we can re-represent it as a sum of distinct terms L_{i} with $0 \leq \mathrm{i} \leq \mathrm{n}-1$, and so we are through in this final case.

[^0]
[^0]: *V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin Co., Boston, 1969.

