ON THE COMPLETENESS OF THE LUCAS SEQUENCE D. E. DAYKIN University of Reading, England

It is well known^{*} that the Lucas sequence

$$L_0, L_1, L_2, \cdots = 2, 1, 3, \cdots$$

is complete. It is easy to see that if $0 \le m < n$, the integer $L_{n+1} - 1$ can't be represented as a sum of distinct L_i with $i \ne m, n$. Thus $\{L_j\}$ is not complete after the removal of two arbitrary terms L_m, L_n . We will also show that the sequence is complete after the removal of any one term L_n with $n \ge 2$.

Let N be a positive integer. It is well known that N is a (maximal) sum of L_i 's, that is,

(1) N = L_{i₁} + L_{i₂} + · · · + L_{i_β} with
$$\begin{cases} i_1 \geq 0 \text{ and} \\ i_{\nu+1} - i_{\nu} \geq 2 \text{ for } 1 \leq \nu < \beta \end{cases}$$

We suppose L_n is one of the terms in the representation (1), for otherwise we have nothing to show, say $n = i_{\alpha} \leq i_{\beta}$. Then

(2)
$$M = L_{i_1} + L_{i_2} + \dots + L_{i_{\alpha}} \leq L_n + L_{n-2} + \dots + L_k + L_0$$
$$= \begin{cases} L_{n+1} + 1 \text{ and } k = 2 \text{ if } n \text{ is even,} \\ L_{n+1} - 1 \text{ and } k = 3 \text{ if } n \text{ is odd }. \end{cases}$$

If $M = L_{n+1} + 1$, we replace the sum (2) for M by $L_1 + L_{n+1}$ in (1). If M $= L_{n+1}$ we replace the sum (2) for M by L_{n+1} in (1). Observe that L_{n+1} does not appear in (1). If $M \leq L_{n+1} - 1$, we can re-represent it as a sum of distinct terms L_i with $0 \leq i \leq n-1$, and so we are through in this final case.

^{*}V. E. Hoggatt, Jr., <u>Fibonacci and Lucas Numbers</u>, Houghton Mifflin Co., Boston, 1969.