A FIBONACCI MATRIX AND THE PERMANENT FUNCTION

BRUCE W. KING
Burnt Hills-Ballston Lake High School, Ballston Lake, New York and
FRANCIS D. PARKER
The St. Lawrence University, Canton, New York

The permanent of an n-square matrix $\left[\mathrm{a}_{\mathrm{ij}}\right]$ is defined to be

$$
\sum_{\sigma \epsilon S_{n}} \prod_{i=1}^{n} a_{i j_{i}}
$$

where

$$
\sigma=\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \cdots, \mathrm{j}_{\mathrm{n}}\right)^{\star}
$$

is a member of the symmetric group S_{n} of permutations on n distinct objects. For example, the permanent of the matrix

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

is

$$
a_{11} a_{22} a_{33}+a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}+a_{13} a_{22} a_{31}
$$

This is similar to the definition of the determinant of $\left[\mathrm{a}_{\mathrm{ij}}\right]$, which is

$$
\sum_{\sigma \in S_{n}} \epsilon_{\sigma}{ }_{i=1}^{n} a_{i j_{i}}
$$

where ϵ_{σ} is 1 or -1 depending upon whether σ is an even or an odd permutation.

There are other similarities between the permanent and the determinant functions, among them:
(a) interchanging two rows, or two columns, of a matrix changes the sign of the determinant - but it does not change the permanent at all. Thus, the permanent of a matrix remains invariant under arbitrary permutations of its rows and columns; and

[^0](b) there is a Laplace expansion for the permanent of a matrix as well as for the determinant. In particular, there is a row or column expansion for the permanent. For example, if we use "per [a_{ij}]" for the permanent of the matrix $\left[\mathrm{a}_{\mathrm{ij}}\right]$, then expansion along the first column yields that

$\operatorname{per}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=a_{11} \operatorname{per}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]+a_{21} \operatorname{per}\left[\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right]+a_{31} \operatorname{per}\left[\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right] \cdot$

For further information on properties of the permanent, the reader should see [1, p. 578] and [3, pp. 25-26].

Unfortunately, one of the most useful properties of the determinant - its invariance under the addition of a multiple of a row (or column) to another row (or column) - is false for the permanent function. As a result, evaluating the permanent of a matrix is, generally, a much more difficult problem than evaluating the corresponding determinant.

Let P_{n} be the n-square matrix whose entries are all 0 , except that each entry along the first diagonal above the main diagonal is equal to 1 , and the entry in the $\mathrm{n}^{\text {th }}$ row and first column also is 1 . (P_{n} is a "permutation matrix. ") For example,

$$
P_{5}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The reader can verify that

$$
P_{5}^{2}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
P_{5}^{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

We now define the matrix $Q(n, r)$ to be

$$
\sum_{j=1}^{r} P_{n}^{j}
$$

For example,

$$
\mathrm{Q}(5,2)=\mathrm{P}_{5}+\mathrm{P}_{5}^{2}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

It is not difficult to see that $\operatorname{per} Q(n, 1)=\operatorname{per} P_{n}=1$, $\operatorname{per} Q(n, 2)=2$, and that $\operatorname{per} Q(n, n)=n!$. It has been shown [2] that

$$
\begin{equation*}
\operatorname{per} \mathrm{Q}(\mathrm{n}, 3)=2+\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}+\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}} \tag{1}
\end{equation*}
$$

The strategy used in the derivation of (1) was to use techniques for the solution of a linear difference equation on a certain recurrence involving per $Q(n, 3)$. There are, also, expressions available for $\operatorname{per} Q(n, 4)$, $\operatorname{per} Q(n, n-1)$ and $\operatorname{per} \mathrm{Q}(\mathrm{n}, \mathrm{n}-2)$. (See [3], [3, pp. 22-28] and [3, pp. 31-35], respectively.) However, $\operatorname{per} Q(n, r)$ has not been determined for $5 \leq r \leq n-3$. The objectives of this paper are to use a "Fibonacci matrix" to derive (1), and to derive an explicit expression for per $Q(n, 3)$ other than that provided by (1). (By a "Fibonacci matrix" we mean a matrix M_{n} for which $M_{n}=$ per $M_{n-1}+$ $\operatorname{per} M_{n-2^{\circ}}$)

Let F_{n} be the matrix $\left[f_{i j}\right]$, where $f_{i j}=1$ if $|i-j| \leq 1$ and $f_{i j}=0$ otherwise. Then, by starting with an expansion along the first column, we find that F_{n} is a Fibonacci matrix.* Since per $F_{2}=2$ and per $F_{3}=3$, per F_{n} yields the $(\mathrm{n}+1)^{\text {th }}$ term of the Fibonacci sequence $1,1,2,3,5, \cdots$. It is well known that the $n^{\text {th }}$ Fibonacci number is given by

[^1]$$
\frac{(1+\sqrt{5})^{\mathrm{n}}-(1-\sqrt{5})^{\mathrm{n}}}{2^{\mathrm{n}} \sqrt{5}}
$$

This, it follows that
(2) $\quad \operatorname{per} \mathrm{F}_{\mathrm{n}}=\frac{(1+\sqrt{5})^{\mathrm{n}+1}-(1-\sqrt{5})^{\mathrm{n}+1}}{2^{\mathrm{n}+1} \sqrt{5}}$.

It is not quite as well known that the $\mathrm{n}^{\text {th }}$ Fibonacci number is also given by

$$
\begin{aligned}
& {\left[\frac{n-1}{2}\right]} \\
& \sum_{k=0}(n-k-1),
\end{aligned}
$$

where

$$
\left[\frac{n-1}{2}\right]
$$

is the greatest integer in

$$
\frac{\mathrm{n}-1}{2}
$$

(See [4, pp. 13-14] for a proof.) From this it follows that

$$
\begin{equation*}
\operatorname{per} F_{n}=\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-k}{k} \tag{3}
\end{equation*}
$$

Now let $U_{n}(i, j)$ be the n-square matrix all of whose entries are 0 except the entry in row i and column j, which is 1 . If we let $R_{n}=F_{n}+U_{n}(n, 1)$, by expansion along the first row of R we find that

$$
\operatorname{per} R_{n}=\operatorname{per} F_{n-1}+\operatorname{per}\left[F_{n-1}-U_{n-1}(2,1)+U_{n-1}(n-1,1)\right]
$$

But, by expanding along the first column,
(4) $\quad \operatorname{per}\left[F_{n-1}-U_{n-1}(2,1)+U_{n-1}(n-1,1)\right]=\operatorname{per} F_{n-2}+1$.

Thus,

$$
\operatorname{per} R_{n}=\operatorname{per} F_{n-1}+\operatorname{per} F_{n-2}+1=1+\operatorname{per} F_{n}
$$

If we now let $S_{n}=R_{n}+U_{n}(1, n)$, by expansion along the first row of S_{n} we find that

$$
\begin{align*}
\operatorname{per} S_{n}=\operatorname{per} F_{n-1}+\operatorname{per}\left[F_{n-1}\right. & \left.-U_{n-1}(2,1)+U_{n-1}(n-1,1)\right] \\
& +\operatorname{per}\left[Q(n-1,2)-U_{n-1}(n-2,1)\right. \tag{5}\\
& \left.-U_{n-1}(n-1,2)+P_{n-1}^{n-1}\right]
\end{align*}
$$

If we substitute from (4) and use Z for the matrix of the third term of the right member of (5), we have

$$
\begin{aligned}
\operatorname{per} S_{n} & =\operatorname{per} F_{n-1}+\operatorname{per} F_{n-2}+1+\operatorname{per} Z \\
& =\operatorname{per} F_{n}+1+\operatorname{per} Z
\end{aligned}
$$

Now expand Z along its first column to obtain per $Z=1+\operatorname{per} F_{n-2}$. Then

$$
\operatorname{per} S_{n}=2+\operatorname{per} F_{n}+\operatorname{per} F_{n-2}
$$

Since $\operatorname{per} S_{n}=\operatorname{per} Q(n, 3)$ (because S_{n} can be obtained from $Q(n, 3)$ by a permutation of columns), it follows that

$$
\operatorname{per} Q(n, 3)=2+\operatorname{per} F_{n}+\operatorname{per} F_{n-2} .
$$

By using (2), we obtain an expression for $\operatorname{per} Q(n, 3)$ which reduces to that given by Minc in [1]. By using (3), we obtain:

$$
\operatorname{per} Q(n, 3)=2+\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-k}{k}+\sum_{k=0}^{\left[\frac{n-2}{2}\right]}\binom{n-k-2}{k}
$$

REFERENCES

1. Marvin Marcus and Henryk Minc, "Permanents," The American Mathematical Monthly, Vol. 72 (1965), No. 6, pp. 477-591.
2. Henryk Minc, "Permanents of $(0,1)$-Circulants," Canadian Mathematical Bulletin, Vol. 7 (1964), pp. 253-263.
3. Herbert J. Ryser, Combinatorial Mathematics, MAA Carus Monograph No. 14, J. Wiley and Sons, New York, 1963.
4. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Company, New York, 1961.
[Continued from page 538.]

SOLUTIONS TO PROBLEMS
1.

$$
T_{n+1}=5 T_{n} \neq 2 T_{n-1}-9 T_{n-2}-5 T_{n-3}
$$

2.

$$
\mathrm{T}_{\mathrm{n}+1}=5 \mathrm{~T}_{\mathrm{n}}-4 \mathrm{~T}_{\mathrm{n}-1}-9 \mathrm{~T}_{\mathrm{n}-2}+7 \mathrm{~T}_{\mathrm{n}-3}+6 \mathrm{~T}_{\mathrm{n}-4} .
$$

3.

$$
T_{n+1}=5 T_{n}-7 T_{n-1}+3 T_{n-2}
$$

4.

$$
T_{n+4}=4 T_{n+3}-2 T_{n+2}-5 T_{n+1}+2 T_{n}
$$

5.

$$
T_{n+6}=2 T_{n+5}+4 T_{n+4}-4 T_{n+3}-6 T_{n+2}+T_{n}
$$

[^0]: ${ }^{\star}$ In this notation, $\left(j_{1}, j_{2}, \cdots, j_{n}\right)$ is an abbreviation for the permutation $\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ j_{1} & j_{2} & \cdots & j_{n}\end{array}\right)$.

[^1]: *There are other Fibonacci matrices. See problem E1553 in the 1962 volume of the American Mathematical Monthly, for example.

