A FIBONACCI MATRIX AND THE PERMANENT FUNCTION

BRUCE W. KING Burnt Hills-Ballston Lake High School, Ballston Lake, New York and

FRANCIS D. PARKER

The St. Lawrence University, Canton, New York

The permanent of an n-square matrix [a_{ii}] is defined to be

$$\sum_{\sigma \in S_n} \prod_{i=1}^n a_{ij_i}$$
 ,

where

$$\sigma = (\mathbf{j}_1, \mathbf{j}_2, \cdots, \mathbf{j}_n)^*$$

is a member of the symmetric group $\, {\boldsymbol{S}}_n^{} \,$ of permutations on $\, n \,$ distinct objects. For example, the permanent of the matrix

a ₁₁	a ₁₂	a ₁₃
a_{21}	a ₂₂	a ₂₃
a ₃₁	a_{32}	a_{33}
•		ر

 \mathbf{is}

$$a_{11}a_{22}a_{33} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} + a_{13}a_{22}a_{31}$$

This is similar to the definition of the determinant of $[a_{ij}]$, which is

$$\sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i=1}^n a_{ij_i}$$
,

where $\varepsilon_{\hat{\sigma}}$ is 1 or –1 depending upon whether σ is an even or an odd permutation.

There are other similarities between the permanent and the determinant functions, among them:

(a) interchanging two rows, or two columns, of a matrix changes the sign of the determinant - but it does not change the permanent at all. Thus, the permanent of a matrix remains invariant under arbitrary permutations of its rows and columns; and

^{*}In this notation, (j_1, j_2, \dots, j_n) is an abbreviation for the permutation $\begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$.

(b) there is a Laplace expansion for the permanent of a matrix as well as for the determinant. In particular, there is a row or column expansion for the permanent. For example, if we use "per $[a_{ij}]$ " for the permanent of the matrix $[a_{ij}]$, then expansion along the first column yields that

$$\operatorname{per}\begin{bmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{bmatrix} = a_{11}\operatorname{per}\begin{bmatrix}a_{22} & a_{23}\\a_{32} & a_{33}\end{bmatrix} + a_{21}\operatorname{per}\begin{bmatrix}a_{12} & a_{13}\\a_{32} & a_{33}\end{bmatrix} + a_{31}\operatorname{per}\begin{bmatrix}a_{12} & a_{13}\\a_{22} & a_{23}\end{bmatrix}.$$

For further information on properties of the permanent, the reader should see [1, p. 578] and [3, pp. 25-26].

Unfortunately, one of the most useful properties of the determinant — its invariance under the addition of a multiple of a row (or column) to another row (or column) — is false for the permanent function. As a result, evaluating the permanent of a matrix is, generally, a much more difficult problem than evaluating the corresponding determinant.

Let P_n be the n-square matrix whose entries are all 0, except that each entry along the first diagonal above the main diagonal is equal to 1, and the entry in the nth row and first column also is 1. (P_n is a "permutation matrix.") For example,

$$\mathbf{P}_5 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The reader can verify that

$$\mathbf{P}_{5}^{2} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{P}_{5}^{3} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

and

$$\sum_{j=1}^{r} P_n^j$$

For example,

$$Q(5,2) = P_5 + P_5^2 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

It is not difficult to see that per $Q(n,1) = per P_n = 1$, per Q(n,2) = 2, and that per Q(n,n) = n!. It has been shown [2] that

(1) per Q(n,3) = 2 +
$$\left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

The strategy used in the derivation of (1) was to use techniques for the solution of a linear difference equation on a certain recurrence involving per Q(n,3). There are, also, expressions available for per Q(n,4), per Q(n,n - 1) and per Q(n,n - 2). (See [3], [3, pp. 22-28] and [3, pp. 31-35], respectively.) However, per Q(n,r) has not been determined for $5 \le r \le n - 3$. The objectives of this paper are to use a "Fibonacci matrix" to derive (1), and to derive an explicit expression for per Q(n,3) other than that provided by (1). (By a "Fibonacci matrix" we mean a matrix M_n for which $M_n = \text{per } M_{n-1} + \text{per } M_{n-2}$.)

Let F_n be the matrix $[f_{ij}]$, where $f_{ij} = 1$ if $|i - j| \le 1$ and $f_{ij} = 0$ otherwise. Then, by starting with an expansion along the first column, we find that F_n is a Fibonacci matrix.* Since per $F_2 = 2$ and per $F_3 = 3$, per F_n yields the (n + 1)th term of the Fibonacci sequence 1, 1, 2, 3, 5, It is well known that the nth Fibonacci number is given by

^{*}There are other Fibonacci matrices. See problem E1553 in the 1962 volume of the American Mathematical Monthly, for example.

$$\frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}} .$$

This, it follows that

(2) per
$$F_n = \frac{(1 + \sqrt{5})^{n+1} - (1 - \sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$
.

It is not quite as well known that the $\,n^{\mbox{th}}\,$ Fibonacci number is also given by

$$\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \binom{n-k-1}{k},$$

where

$$\left[\frac{n-1}{2}\right]$$

is the greatest integer in

$$\frac{n-1}{2}$$

(See [4, pp. 13-14] for a proof.) From this it follows that

(3)
$$\operatorname{per} \mathbf{F}_{n} = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {\binom{n-k}{k}} .$$

Now let $U_n(i,j)$ be the n-square matrix all of whose entries are 0 except the entry in row i and column j, which is 1. If we let $R_n = F_n + U_n(n,1)$, by expansion along the first row of R we find that

542

1969] A FIBONACCI MATRIX AND THE PERMANENT FUNCTION

per
$$R_n = per F_{n-1} + per [F_{n-1} - U_{n-1}(2,1) + U_{n-1}(n - 1,1)].$$

But, by expanding along the first column,

(4)
$$\operatorname{per} [F_{n-1} - U_{n-1}(2,1) + U_{n-1}(n-1,1)] = \operatorname{per} F_{n-2} + 1.$$

Thus,

per
$$R_n = per F_{n-1} + per F_{n-2} + 1 = 1 + per F_n$$
.

If we now let $S_n = R_n + U_n(1,n)$, by expansion along the first row of S_n we find that

$$per S_{n} = per F_{n-1} + per [F_{n-1} - U_{n-1}(2,1) + U_{n-1}(n-1,1)]$$

$$(5) + per [Q(n-1,2) - U_{n-1}(n-2,1)]$$

$$- U_{n-1}(n-1,2) + P_{n-1}^{n-1}].$$

If we substitute from (4) and use Z for the matrix of the third term of the right member of (5), we have

$$per S_n = per F_{n-1} + per F_{n-2} + 1 + per Z$$
$$= per F_n + 1 + per Z.$$

Now expand Z along its first column to obtain per Z = 1 + per F_{n-2} . Then

$$\operatorname{per S}_{n} = 2 + \operatorname{per F}_{n} + \operatorname{per F}_{n-2}$$
.

Since per $S_n = per Q(n,3)$ (because S_n can be obtained from Q(n,3) by a permutation of columns), it follows that

per Q(n,3) = 2 + per
$$F_n$$
 + per F_{n-2} .

By using (2), we obtain an expression for per Q(n,3) which reduces to that given by Minc in [1]. By using (3), we obtain:

per Q(n,3) = 2 +
$$\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} {\binom{n-k}{k}} + \sum_{k=0}^{\left\lfloor \frac{n-2}{2} \right\rfloor} {\binom{n-k-2}{k}}$$
.

REFERENCES

- Marvin Marcus and Henryk Minc, "Permanents," <u>The American Mathema-</u> <u>tical Monthly</u>, Vol. 72 (1965), No. 6, pp. 477-591.
- Henryk Minc, "Permanents of (0,1)-Circulants," <u>Canadian Mathematical</u> <u>Bulletin</u>, Vol. 7 (1964), pp. 253-263.
- 3. Herbert J. Ryser, <u>Combinatorial Mathematics</u>, MAA Carus Monograph No. 14, J. Wiley and Sons, New York, 1963.
- 4. N. N. Vorob'ev, <u>Fibonacci Numbers</u>, Blaisdell Publishing Company, New York, 1961.

[Continued from page 538.]

SOLUTIONS TO PROBLEMS

1.
$$T_{n+1} = 5T_{n} * 2T_{n-1} - 9T_{n-2} - 5T_{n-3} .$$

2.
$$T_{n+1} = 5T_{n} - 4T_{n-1} - 9T_{n-2} + 7T_{n-3} + 6T_{n-4} .$$

3.
$$T_{n+1} = 5T_{n} - 7T_{n-1} + 3T_{n-2} .$$

4.
$$T_{n+4} = 4T_{n+3} - 2T_{n+2} - 5T_{n+1} + 2T_{n} .$$

5.
$$T_{n+6} = 2T_{n+5} + 4T_{n+4} - 4T_{n+3} - 6T_{n+2} + T_{n} .$$

544