REMARK ON A PAPER BY R. L. DUNCAN CONCERNING THE UNIFORM DISTRIBUTION MOD 1 OF THE SEQUENCE OF THE LOGARITHMS OF THE FIBONACCI NUMBERS

L. KUIPERS

Southern Illinois University, Carbondale, Illinois

In the following we present a short proof of a theorem shown by R. L. Duncan [1]:

Theorem 1. If μ_{1}, μ_{2}, \cdots is the sequence of the Fibonacci numbers, then the sequence $\log \mu_{1}, \log \mu_{2}, \cdots$ is uniformly distributed $\bmod 1$.

Moreover, we show the following proposition.
Theorem 2. The sequence of the integral parts $\left[\log \mu_{1}\right],\left[\log \mu_{2}\right], \cdots$ of the logarithms of the Fibonacci numbers is uniformly distributed mod m for every positive integer $\mathrm{m} \geq 2$.

Proof of Theorem 1. It is well known that

$$
\frac{\mu_{\mathrm{n}+1}}{\mu_{\mathrm{n}}} \rightarrow \frac{1+\sqrt{5}}{2}
$$

or

$$
\begin{equation*}
\log \mu_{\mathrm{n}+1}-\log \mu_{\mathrm{n}} \rightarrow \log \frac{1+\sqrt{5}}{2}, \quad \text { as } \mathrm{n} \rightarrow \infty \tag{1}
\end{equation*}
$$

In [2] (see th. 12.2.1), it is shown that if $\omega \neq 0$ is real and algebraic, then θ^{ω} is notan algebraic number. Therefore,

$$
\frac{1+\sqrt{5}}{2}
$$

being an algebraic number, we conclude that

$$
\log \frac{1+\sqrt{5}}{2}
$$

is transcendental. (One can also argue as follows: let be given that $\theta>0$ is algebraic. Now suppose that $\log \theta=u / v$ where u and v are integers. Then

REMARK ON A PAPER BY R. L. DUNCAN CONCERNING
THE UNIFORM DISTRIBUTION MOD 1 OF THE SEQUENCE
OF THE LOGARITHMS OF THE FIBONACCI NUMBERS Dec. 1969 we would have $\theta^{\mathrm{V}}=e^{\mathrm{u}}$. But this is impossible since θ^{V} is algebraic and e^{u} is transcendental (orally communicated by A. M. Mark).

According to a theorem due to J. G. van der Corput we have that a sequence of real numbers $\lambda_{1}, \lambda_{2}, \cdots$ is uniformly distributed $\bmod 1$ if

$$
\lambda_{\mathrm{n}+1}-\lambda_{\mathrm{n}} \longrightarrow \theta \quad \text { (an irrational number) as } \mathrm{n} \rightarrow \infty .
$$

(see [3]). By the property (1) we see that the sequence $\log \mu_{1}, \log \mu_{2}, \cdots$ is uniformly distributed mod 1.

Proof of Theorem 2. First, we use the fact that the sequence

$$
\frac{\log \mu_{n}}{m} \quad(m, \text { an integer } \neq 0), \quad n=1,2, \cdots,
$$

is uniformly distributed mod 1 which follows by the same argument used in the proof of Theorem 1: we have namely

$$
\frac{\log \mu_{\mathrm{n}+1}}{\mathrm{~m}}-\frac{\log \mu_{\mathrm{n}}}{\mathrm{~m}} \rightarrow \frac{\log \frac{1+\sqrt{5}}{2}}{m} \text { (non-algebraic) as } \mathrm{n} \rightarrow \infty
$$

Then according to a theorem of G. L. van den Eynden [4], quoted in [5] the sequence

$$
\left[\log \mu_{1}\right],\left[\log \mu_{2}\right], \cdots
$$

is uniformly distributed modulo m for every integer $m \geq 2$, that is, if $A(N, j, m)$ is the number of elements of the set

$$
\left\{\left[\log \mu_{\mathrm{n}}\right]\right\} \quad(\mathrm{n}=1,2, \cdots, \mathrm{~N})
$$

satisfying

$$
\left[\log \mu_{\mathrm{n}}\right] \equiv \mathrm{j}(\bmod \mathrm{~m}), \quad(0 \leq \mathrm{j} \leq \mathrm{m}-1)
$$

then
[Continued on page 473.]

