$$
b(2 k+1)=b(k+1)+b(k) \quad \text { for } \quad k \geq 1
$$

For $\mathrm{n} \geq 1$, show the following:
(a)

$$
\mathrm{b}\left(\left[2^{\mathrm{n}+1}+(-1)^{\mathrm{n}} / 3\right)=\mathrm{F}_{\mathrm{n}+1}\right.
$$

(b)

$$
\mathrm{b}\left(\left[7 \cdot 2^{\mathrm{n}-1}+(-1)^{\mathrm{n}}\right] / 3\right)=\mathrm{L}_{\mathrm{n}}
$$

Solution by Michael Yoder, Student, Albuquerque Academy, Albuquerque, New Mexico.
(a) For $\mathrm{n}=0,1$ the formula is easily verified. Assume it is true for $\mathrm{n}-2$ and $\mathrm{n}-1$ with $\mathrm{n} \geq 2$; then if n is even,

$$
\begin{aligned}
\mathrm{b}\left[\left(2^{\mathrm{n}+1}+1\right) / 3\right] & =\mathrm{b}\left[\left(2^{\mathrm{n}}-1\right) / 3+\mathrm{b}\left(2^{\mathrm{n}}+2\right) / 3\right] \\
& =\mathrm{F}_{\mathrm{n}}+\mathrm{b}\left[\left(2^{\mathrm{n}-1}+1\right) / 3\right] \\
& =\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-1}=\mathrm{F}_{\mathrm{n}+1} .
\end{aligned}
$$

Similarly, if n is odd,

$$
\mathrm{b}\left[\left(2^{\mathrm{n}+1}-1 / 3\right]=\mathrm{F}_{\mathrm{n}+1}\right.
$$

(b) For $\mathrm{n}=1,2$ the theorem is true; and by exactly the same argument as in (a), it follows by induction for all positive integers n.
Also solved by Herta T. Freitag and the Proposer.
(Continued from page 101.)

SOLUTIONS TO PROBLEMS

1.

$$
5 n^{3}-4 n^{2}+3 n-8
$$

2. $3 \mathrm{n}^{2}-8 \mathrm{n}+4$ and the Fibonacci sequence: $1,4,5,9,14, \cdots$.
3. $7 n^{3}+3 n^{2}-5 n+2+3 x 2^{n}$.
4.

$4 \mathrm{n}+3+3(-1)^{\mathrm{n}}$.
5. $2 n^{3}-3 n^{2}-n+5$ and the Fibonacci sequence $4 L_{n}$.

