LETTERS TO THE EDITOR

Dear Editor:
It may be of interest to your readers to note that there is a simple elementary proof of Theorem 7, page 91 , Vol. 6, No. 3, June 1968, by D. A. Lind, which uses the method of descent.

To restate the Theorem,
Theorem
(1)

$$
5 \mathrm{x}^{2} \pm 4=\mathrm{y}^{2}
$$

if and only if x is a Fibonacci number and y is the corresponding Lucas number.

Proof. It is a simple identity to show that a Fibonacci and Lucas number satisfy (1) using the identities $u_{n}=u_{n+1}-u_{n-1}, v_{n}=u_{n+1}+u_{n-1}$, and $u_{n+1} u_{n-1}-u_{n}^{2}=(-1)^{n}$.

To show the converse, suppose x is the smallest positive integer which is not a Fibonacci number which satisfies (1). Then $x \geq 4$ so that clearly $2 \mathrm{x}<\mathrm{y}<3 \mathrm{x}$ and y is the same parity as x . Hence, let $\mathrm{y}=\mathrm{x}+2 \mathrm{t}$ with $\mathrm{t}<\mathrm{x}$. By substitution,

$$
4 x^{2}-4 t x-4 t^{2} \pm 4=0
$$

solving for 2 x ,

$$
2 \mathrm{x}=\mathrm{t} \pm \sqrt{5 \mathrm{t}^{2} \pm 4}
$$

so that

$$
5 t^{2} \pm 4=s^{2}
$$

where t and s are integers. Therefore t is a smaller solution to (1) than x so t must be a Fibonacci number and s is the corresponding Lucas number. But then

$$
2 \mathrm{x}=\mathrm{u}_{\mathrm{n}} \pm \mathrm{v}_{\mathrm{n}}
$$

and since $v_{n}>u_{n}, n>1$

$$
2 x=u_{n}+v_{n}=2 u_{n+1}
$$

so that x is a Fibonacci number if t is, QED.
I have continued to enjoy the Fibonacci Quarterly since its inception. Keep up the good work.

David E. Ferguson
Programmatics, Inc.,
Los Angeles, California

Dear Editor:

I cheerfully donate these formulas to you. I think they have a place in the Quarterly. If you agree and feel you would like to develop a note on the basis of these formulas, I would be happy indeed.

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{2}=\mathrm{L}_{2 \mathrm{n}}+2(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{3}=\mathrm{L}_{3 \mathrm{n}}+3 \mathrm{~L}_{\mathrm{n}}^{(-1)^{\mathrm{n}}} \\
& \mathrm{~L}_{\mathrm{n}}^{4}=\mathrm{L}_{4 \mathrm{n}}+4 \mathrm{~L}_{\mathrm{n}}^{2}+2(-1)^{\mathrm{n}+1}(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{5}=\mathrm{L}_{5 \mathrm{n}}+5 \mathrm{~L}_{\mathrm{n}}^{3}+5 \mathrm{~L}_{\mathrm{n}}(-1)^{\mathrm{n}+1}(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{6}=\mathrm{L}_{6 \mathrm{n}}+6 \mathrm{~L}_{\mathrm{n}}^{4}+9 \mathrm{~L}_{\mathrm{n}}^{2}(-1)^{\mathrm{n}+1}+2(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{7}=\mathrm{L}_{\mathrm{n}}+7 \mathrm{~L}_{\mathrm{n}}^{5}+14 \mathrm{~L}_{\mathrm{n}}^{3}(-1)^{\mathrm{n}+1}+7 \mathrm{~L}_{\mathrm{n}}(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{8}=\mathrm{L}_{8 \mathrm{n}}+8 \mathrm{~L}_{\mathrm{n}}^{6}+20 \mathrm{~L}_{\mathrm{n}}^{4}(-1)^{\mathrm{n}+1}+16 \mathrm{~L}_{\mathrm{n}}^{2}+2(-1)^{\mathrm{n}+1}(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{9}=\mathrm{L}_{9 \mathrm{n}}+9 \mathrm{~L}_{\mathrm{n}}^{7}+27 \mathrm{~L}_{\mathrm{n}}^{5}(-1)^{\mathrm{n}+1}+30 \mathrm{~L}_{\mathrm{n}}^{3}+9 \mathrm{~L}_{\mathrm{n}}(-1)^{\mathrm{n}+1}(-1)^{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}^{10}=\mathrm{L}_{10 \mathrm{n}}+10 \mathrm{~L}_{\mathrm{n}}^{8}+35 \mathrm{~L}_{\mathrm{n}}^{6}(-1)^{\mathrm{n}+1}+50 \mathrm{~L}_{\mathrm{n}}^{4}+25 \mathrm{~L}_{\mathrm{n}}^{2}(-1)^{\mathrm{n}+1}+2(-1)^{\mathrm{n}}
\end{aligned}
$$

Harlan L. Umansky
Emerson High School
Union City, New Jersey

