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1. INTRODUCTION 

In the first paper [2 ] in this ser ies , we developed certain properties of 
the simple continued fraction expansions of integral multiples of quadratic 
surds with expansions of the form [a,b] or [a ,b ,c] where the notation is 
that of Hardy and Wright [1, Chapter 10]. For easy reference, we restate the 
principle results here. 

Theorem 1. Let £ = [ a ,b ] , let n be a positive integer, let p, /q. 
denote the k convergent to £ and let t, = q, - + q, - for k > 0 where 
we take q_x = 0. Then n£ = [ r / s ] if and only if n = <l2in_2> r = p 2m-2 ' 
and s = t0 0 for some m > 1. 2m-2 

Theorem 2. Let £, n, p, /q, and t, be as in Theorem 1. Then n£ = 
[u ,v ,w] if and only if vn = q 2 m _ l 9 vu = P 2 m _ 1 - If and vw = t 2 m _ 1 - 2 
for some integer m ^ 1. 

* 8 th 
Theorem3. Let £ = [ a , b , c ] , let p, /q, be the k convergent to £ , 

let t^ = qk_1 + q k + 1 and s k = pk_^ + p k + 1 for k > 1. Then, for every 
integer r > 1, we have 

q 2 r * ^ = [p2r9 fc2r> c t 2 r / b ] ' 
q2r-l °£ = tp2r-l " X' l> S r - i " 2 ] 

hv-l ' * = [S2r-1> q 2 r - l ' ( c ' + 4 c / b ) q 2 r - l J 

and 

t 2 r ' ( = [ s 2 r - 1, 1, q 2 r - 2, 1, (be + 4)q2 r - 2 ] . 

Of course, for a = b = c = 1, the preceding theorems give results in-
volving the golden ratio, (1 + V*5)/2, and the Fibonacci and Lucas numbers 
since, in that case, 

*The first author was supported by NSF Grant GP-7114. 
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{ = (1 + VB)/2. p k = F k + 2 , qk = F k + 1 , ^ = L k + 1 , and ^ = ^ 

where F and L denote respectively the n Fibonacci and Lucas numbers. 
In the present paper, we devote our attention primarily to the study of 

the simple continued fraction expansions of positive rational multiples of quad-
ratic surds with expansions of the form [a] . Again, we note that, for a = 1, 
the theorems specialize to results about the golden ratio and Fibonacci and 
Lucas numbers. 

2. PRELIMINARY CONSIDERATIONS 

Let the integral sequences {f } and {g } be defined as follows: 
n ri>0 n n>0 

(1) f0 = 0, ft = 1, fn = a ^ ! * ^ ' n - ° • 

and 

(2) go = 2, gt = a, gn = agn_1 + g ^ , n > 0 , 

where a is any positive integer. These difference equations are easily solved 
to give 

(3) fn = * " £ , n=> 0 , 
7a2 + 4 

and 

(4) gn = t + ?n , n > 0 , 

where 

£ = (a + Va2 + T) /2 and J = (a - */a2 + 4) /2 

are the two irrational roots of the equation 

(5) x2 - ax - 1 = 0 . 
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Incidentally, if fl is a quadratic surd, we will always denote the conjugate surd 
by p. The following formulas, of interest in themselves, generalize results 
for the Fibonacci and Lucas numbers and are easily proved by induction, 

f 2 n = > : ^ - M l 2 i + 1 = Z (2! + i)a 

i=0 ^ / 
(6) n > 0 , 

fo 2n+l 
i=0 

(7) %n = f n - l + W n ^ > 

( 8 ) f m + n + l = fmfn + Wn+1> m ^ 0 ' n * °> 

( 9 ) ^rnn-n+l = fm^n + Wn+1' m * °' n ^ °> 

(10) f f - f A ^ = (-l)m~h JJt9 l < m < n . 
m n m-1 n+1 m-n+1' 

Also, we obtain in the usual way from (8) the following lemma. 
Lemma 4. For the integral sequence (f } ^ 0 we have that f If if 

and only if m| n, where m and n are positive integers and m > 2 if a = 1. 

3, PRINCIPAL RESULTS 

Our first theorem, together with the results of the first paper in this 
couplet, yields a series of results concerning the simple continued fraction 
expansion of multiples of £ =: [a] by the reciprocals of positive integers* The 
theorem is also of some interest in its own right. 

Theorem 5. Let £ = (a + b*/c)/d with a, b , c, and d integers, c 
not a perfect square, and c and d positive. Let r be a positive rational 
number such that 2ar/d is an integer. Let a2 + d2 = b2c and let 1 < £ < r . 
Then 

r£ = [a0, al8 a2, ••• ] , 
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if and only if 

£ L 2 a r 1 
r | ' a° " ~ c P a i > a 2 ' ' " 1 * 

st that â  - 2ar/d is p 

[ar + r l W c | ^ r a + 
— 3 "J c 

Proof. We note first that â  - 2ar/d is positive. This is so since 
rbVc" 

so that 

a0 - ( _̂  ! ^ g. 

2ar ^ - r a + rbN/c" 

= 

51 

a 

r 
{ 

d 

(*-

U-
rd 

+ h\l~c 

- 1 => 

- b2c > 

b's/c" 

1 

o , 

by hypothesis. Now let /x = [a^ a2, a3, • • • ] so that 

r£ = a0 + - . 

Then 

tn 2ar "1 1 

0, a0 - — , als a2, ••• = 2 a r t 

2ar 

+ bVc 2a\ 
d ~ d J r i 

r ( -a + b's/c) 

-d(a + b^F) 
r(a2 - b2c) 

a + b^c" 
~ . dr 
= £_ 

r 



1970] ON SIMPLE CONTINUED FRACTIONS - H 139 

and the proof is complete. 
Corollary 6. Let a and n be positive integers. Let £ = [a] and let 

n > f . Then 

n£ = [a0, al9 a2, ••• ] 

if and only if 

| = [0, a0, - an, al9 a2, " ' ] . 

Proof. Since 

* * •> a + \ / a 2 + 4 
f = [a] = j , 

we may use the preceding theorem with a = a, b = 1, c = a2 + 4, d = 2, 
and r = n. The result then follows immediately since 

2ar _ 2an 
d ~ 2 

is an integer and 

as required. 
Now for 

+ d2 = a2 + 4 = b2c , 

f = [a] = • s -

The convergents p, /q. are given by the equations 

p0 = a, P l = a2 + 1, p n = ap n _ 1 + p n _ 2 , 
(11) n ^ 2 , 

q0 = 1, qt = a, qn = a q ^ + qn__2 , 

and it is clear that p = f „ and q = f - for n ^ 0. Also, p' = f 
and qf = f - for n ^ 0, where pf /qT is the n convergent to l/f. The 
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following results could all be stated in terms of the sequences ( p } and {q }; 
instead, we use the sequences (f } and ( g }. 

Corollary 7. Let r , s, and n be the positive integers with n > £ = 

[ a ] . Then f /n = [0, r , s ] , if and only if, n = f
2 m - l ' r = f2m' a n d S = 

qn - for some m ̂  2. ^2m-l 
Proof. This is an immediate consequence of Theorem 1 with a = b, 

and Corollary 6. 
Corollary 8. Let u, v., w, and n be positive integers with n > £ = 

[ a ] . Then f/n = [0, u, v, w ] , if and only if, vn = f2m> vu = ̂ m + l " 1 ' 
and vw = g2 - 2 for some integer m ̂  2. 

Proof. This is an immediate consequence of Corollary 6 and Theorem 2 
with u = v = w = a. 

The next corollary results from Theorem 3 and Corollary 6 by taking 
a = b = c. However, since, in this special case, parts (a) and (b) of Theo-
rem 2 yield results already obtained, we concern ourselves only with parts 
(c) and (d). 

Corollary 9. Let n be a positive integer greater than £. Then for 
r > 1 , 

4 = [°> < W f2r' <a2+'4>f
2r] 

and 

^ = [0, g 2 r - 1. 1, f2r+1 - 2, 1, (a* + 4)f2r+1 - 2 ] . 

The next theorem shows that the periodic part of the simple continued 
fraction expansion of n for siny positive integer n > f = [a] is almost sym-
metric. Of course, by Corollary 6, the same thing is true of f/n. 

Theorem 10. Let a and n be positive integers with n > £ = [a] . 
Then n£ = [a0, a t , • • • , a ] and the vector (al9 a2, ••• , a _-) is symmetric 
if r ^ 2. 
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Proof. Since a0 = [n£ ] , we have that 

0 < nf - fy < 1 

and 

f! = —1 - i , 
1 • n( - a0 

where f j is the first complete quotient in the expansion of n . Moreover, 

1 1 
f l = 

n£ - a0 ^ + a0 

so that 

-1 <|J" <0 f 

since ao + n/f is clearly greater than one, Thus, fj is a reduced quadratic 
surd and by the general theory (see, for example [3, Chapter 4]) has a purely 
periodic simple continued fraction expansion, say 

f l = [ait a2, ••• , a r ] . 

Additionally, we also have that [a , a - , ' °° , a-] is the expansion of the 
negative reciprocal of the conjugate of £lo Thus, 

r . o i I n , a , a ., j °a • , a- J = - —• = 7- + a* L r* r_]_» ' 1J j £ v 

so that 

(12) J = [0, a r - aQ, a r - l f a r_2 , • • - , a ^ a r ] 
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But, from above, 

n£ = [a0, &i, ••• , a r ] , 

and by Corollary 6, 

(13) - = [0, a0 - an, alf a2, • • • , a r ] . 

Thus, comparing (12) and (13), we have that the vector (als a2, • • • , a _-) is 
symmetric. 

We now turn our attention to the consideration of more general positive 
rational multiples of £ = [a] . 

Theorem 11. Let r be rational with 0 < r < 1. If the simple con-
tinued fraction expansion of r£ is not purely periodic, then 

r£ = [0, a1? a2, ••• , a j 

and 

I _ r . . , 
r ~ Lan " V V l ' a n - 2 ' " • » a 2 ' a n J 

for some n ^ 2. 
Proof. If r£ had a purely periodic simple continued fraction expansion, 

then r£ would have to be a reduced quadratic surd so that r£ > 1 and -1 ^ 
rT < 0. But the first of these inequalities implies that 

(14) j < r < 1 , 

and, since £ = - l / f , the second implies that 

(15) £ > r > 0 
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which is already implied by (14). Therefore, since r£ is not purely periodic, 
we have 

(16) 0 < r < i , 

so that 0 = [ r £ ] = a0. Now consider 

f 1 = ^ > 1 . 

and set aj = [£i] ^ 1. Again, 

1 _ „ f i - aj 
1 = h > 1 

and 

(2 = 2 " T T~~ 
— - H 7 + at 

since £?" = - 1 . Therefore, - 1 < J2 < 0 and £2
 i s reduced. Thus, £2

 n a s 

a purely periodic simple continued fraction expansion, 

6 = [a2i a3, • • • , an] , 

and 

r£ = [0, al5 a2, ••• , a j , 

as claimed. Also, 

— + ai = - —- = a , a - , •• • , a0 , 
r * T- L n ' n-1 ' 2J ' 

* 2 
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so that 

"~" ~~ I a — a., • a .., a ~ • « a^, a i 
r L n 1 n-1 r-2 2 nJ 

and the proof is complete. 
Theorem 12. Let r be rational with 0 < r < 1. If the simple contin-

ued fraction expansion of rf is purely periodic, then 

r£ = [ v ai» "•» *J 

and 

- = fa , a - , • • • , aA1 
r L n n-1 0 J 

for some n > 0. 
Proof. Since the simple continued fraction expansion of rf is purely 

periodic, it is reduced and we have by the preceding proof that 

| < r < 1 

Since we also have 

f i r - - i 
.2. = „ — = a , a . , • • • , a~ J , 
r T L n n-1 ° 

the proof is complete. 
In passing, we note that the periodic part of the expansions of rf need 

not exhibit any symmetry or even near symmetry. For example, for 

a = [1] = 2 , 

we have that 
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| o r = [0, 2, l f 3, 1, 1, 3, 9] 
and 

| a = [1 , 4, 1, 2, 6, 2] . 

Also, it is easy to find rational numbers r with 0 < r < 1 such that the 
surds va and a/v are not equivalent where we recall that two real numbers 
JJL and v are said to be equivalent if and only if there exist integers a, b , c, 
and d with | ad - be j = 1 and such that 

u, = SL4 . 
^ cv + d 

However, as the following theorems show, there exist interesting examples, 
where near symmetry of the periodic part of the expansions of r f and £ / r 
and equivalence of r£ and r / f both hold. We will indicate that r f and f / r 
are equivalent by the notation 

b r 

Theorem 13. Let a be a positive integer, let f = [a ] , and let the 
sequences (f } and {g } be as defined above. Then, for n > 1, 

n n>0 

• £ = [aQ, ax , • • • , a r ] 

n n^O n n -0 

f2n+l 
f2n+2 

and 

2n+2 r. . o 1 
7—— • £ = a , a • , ? • " , a n J 
f2n-KL r ^ ° 

where the vector (a2, a3, *•• , a r , ao) is symmetric, a0 = a2 = 1, and aj = 
f - 1 
*4n+3 l o 
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Proof. We first demonstrate the purely periodic nature of the expan-
sions in question. From the definition, it is clear that f is strictly increas-
ing for n ^ 2. Also, f /f - is the n convergent to l/f. Therefore, 

(17) ^ L . < i <^£±1< 1 . 
i2n+l * x2n+2 

and it follows from the proof of Theorem 11 that f f2 - /fL 2 has a purely 
periodic expansion. Also, from Theorem 12, £f2 2 /f2 - has a purely 
periodic expansion whose period is the reverse of that for £f2n+l ^ 2 +2* 

Additionally, from (17), it follows that 

< 
f2n+l _ i < 1 / f2n+l __ f2n \ = _ 1_ 
f2n+2 f 2 \ f 2n+2 f2n+l/ 2f2n+lf! 2n+l 2n+2 

so that 

- . f2n+l > _ g , , 
1 < ^ _ . £ < _ + 1 

*2n+2 x2n+l 2n+2 

< 2 f
 t a n y + 1 < 2 
2n+l 2n+2 

Thus, a0 = [ff2n+1 / f 2 n + 2 ] = 1. Now 

2n+l . f . ! 
f2n+2 

and we claim that 

W * - K 1̂ < f 4n+3 ^ ! 4n+3 9 

so that a4 = f4 „ - 1. To see that this is so, we note mat, since f 2 /f -
is the n convergent to £ , 
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f2n+2 ^ f4n+4 . 
f < f " < ^ 
2n+l 4n+3 

and 

1 ^ f2n+lf4n+4 ^ f 2n+l „ 
1 < ^ < . £ % 

2n+2 4n+3 2n+2 

But this gives, using (10), 

2n-fl 2n+l 4n+4 2n+2 4n+3 
* f x > f f — 

2n+2 2n+2 4n+3 

f2n+2 1 
f2n+2f4n+3 f4n+3 

o r 

(18) £ < f 

a s des i r ed . Also , we have that 

4n+3 

so tha t , again by (10), 

f2n+2 t
 f4n+3 

f * "̂  f 
2n+l 4n+2 

o < ^ S J i . f - i 
£2n+2 

*2n+lf4n+3 ~ f2n+2f4n+2 
^ , _ _ : , 

2n+2 4n+2 

f2n+l f2n+2f4n+2 

f 
2n+l 

f2n+lf4n+3 f2n+l 
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and 

Thus, aj = [f i] = f. „ - 1 as claimed. Finally, to show the symmetry of 
the vector (a2, &$, ••• , a , aQ) , it suffices to show that 

(19) 1 - £ = £ . « . 
2n+l 

a2 

f2n+l 
f7~7 " * " a0 

at 

2n+2 

Making use of the determined values of a0 and aj and setting a2 = 1, this 
means that we must show that 

(20) 1 = **** • f 
2n+l 

" <f4n+3 - « 

f2n+l 
f ( ' 1 
x2n+2 

which will also, of course, confirm the fact that a2 = 1. Now (20) is true if 

and only if 
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1 - _ f 2n+l 

2n+2 

( f4n+3 " « 

x2n+2 

which i s t rue if and only if 

1 
f2n+l . 
x2n+2 

- 1 
(f4n+3 " 1) - ^ 2 n + 2 

' f + f f 
x2n+l * 2n+2 

which, in tu rn , i s t rue if and only if 

f H 
2n+2 s 2n+2 f -

^ f 2 n + l - f 2n + 2 " f 2 n + l + ^ 2 n + 2 " to+3 " 

To see that th i s l a s t equation i s t rue we make use of (8), (10), and the fact that 
£2 = ^ + i £0 obtain 

f2n+2 ^f2n+2 =
 f2n+2f2n+l + *f2n+2 " ^ f2n+lf2n+2 + ^f2n+2 

£ f2n+l " f2n+2 " f2n-KL + ^ 2 Q + 2 " | f | n + 1 + £ V < - l f 2n+2 - W 2 n + 2 " ^ + 2 

2 ^ 2 n + 2 " a^ f2n+l f2n+2 

f f 2n+l + a f f 2n+l f 2n+2 " f f2n+2 

f (f + f ) 
2n+2u2n+2 2 n ; 

f f - f2 

1 2n+l 2n+3 2n+2 

f2 4 - f f + f f - f 2 - 1 
x2n+2 I2n+2 2n 2n+l 2n+3 2n+2 

f - 1 I4n+3 
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Th i s comple tes the proof. 

Because of the s imi l a r i t y of method, the following t heo rems a r e s ta ted 

without proof. The notation i s as before . 

T h e o r e m 14. F o r n > 2 , 

2n *. r • ° i 
7——•• £ = La0> ai> a2» " • » a r J 
2n+l 

and 

f 
2n+l ^ r -i • • i 

-f—- • £ = La3 - 1, a4, a5, • • • , a r , a2, a3J , 
2n 

where the vec tor (a3, a4, • • • , a r ) i s s y m m e t r i c , a0 = 0, a4 = 1, a2 

f 4n+l " l f a n d a3 = f3 + !• 
T h e o r e m 15. Let n >: 2 be an in teger . Then 

n+2 r . . , 
—— • f = [a0, at, ••• , ar J , 

11 >• _ r» . . . " 1 

?""" * ' ~" L a r ' a r - l ' ' ao Js 

n+2 

- ~ e f = [ b 0 , b j , • • • , b s ] , 

and 

T^-t = [ V V l ' •'••fco] 

T h e o r e m 16. Le t n be a posi t ive in teger . Then 

g 2n+ l t T . . , 
— — • f = [ a 0 , aA, a2, • • • , a r J , 
82n+2 
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and 

g2n+2 
2n+l r 

£ = [ 29 a4? a5, • . . , a . a2, a3 ] 

and the vector (a3, a4, • » • , a r ) is symmetric with a0 = 0, a,t = 1, 
f4n+3 " l s a n d a 3 = 3e 

Theorem 17, Let n be a positive integer. Then 

g2n 
=2n+l 

| = [a0, *U • • • , a r ] 

and 

g2n+i 
g2n 

£ = [ a r , a r_ l S • • • , aif a0] , 

where the vector (a29 a3, °«°, a r s a0) is symmetric with a^ - a2 = l f and 
a l = f4n+l " X« 

In view of the preceding results 9 one would expect an interesting theorem 
concerning the simple continued fraction expansion of 

i . £ and £.€ 
s n n 

but we were not able to make a general assertion value for all a. To illustrate 
the difficulty, note thats when a = 2 and £ = 1 + *J"29 we have 

f4 
— • £ = [ 0 , 1 , 5, 1, 3, 5, 1, 7] , 
&4 

g5 
and 

f 
f = [0, 1, 5, 1, 5, 3, 1, 4, 1, 7] , 
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f 
1- • £ = [0 , 1, 5, 1, 4, 1, 3, 5, 1, 4 , 1, 7] . 
&6 

However, for 

i; = ® = [1] = — « — ^ - » 

we obtain the following rather elegant result: 
Theorem 18. Let a = (1 + *v/5)/2 an 

Fibonacci and Lucas numbers, respectively. Then, for n > 4, 
Theorem 18. Let a = (1 + *v/5)/2 and let F and L denote the n 

F 
(21) _ £ . a = [0 , 1, 2, 1, • • • , 1, 3, 1, • • • , 1, 4 ] L n 

and 

L 
(22) -I- • a = [ 3, 1, • • • , 1, 3, 1, - • • , 1, 2, 4 ] , 

n 

where, in (21), there are n - 4 ones in the first group and n - 3 ones in the 
second group and just the reverse in (22). 

Proof. Set 

x n = [2 , 1, • - . , 1, 3, 1, • • • , 1, 4] 

= [2 , 1, • • • , 1, 3, 1, • • • , 1, 4, x n ] . 

Then it is easy to see by direct computation as on computes convergents, that 

a x + b 

™ \ • JT7T 
n n n 

where 
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a n " 4 ( L n - l F n - l + Fn-2>2 + ( L n-2 F n- l + Fn-3Fn-2> 

= 4 F n + F n F n - l + <-»*' 

bn = L n - l F n - l + F n -2 = F n • 

Cn " 4 ( L n - l F n - 3 + Fn-2Fn-4> + <Ln-2Fn-3 + V s W 

= 4Fn-l + F n F n - 3 • 

and 

d = L F + F F = F 2 

n V l n - 3 n-2 n-4 n-1 

Moreover, from (23), 

(a - d ) + J ( a - d )2 + 4b c n n7 y n n n n 
x 

2c n 

and 

yn = [o, i. x j 
X 

n x + 1 n 

(a - d ) + J ( a - d )2 + 4b c n n y n n n n 

(a - d +2c )+ (a - d )g+4b c n n n n n' n n 

(a - d -2b ) + J ( a - d )2 + 4b c 
= n n n Jn n n n 

2(a - b + c - d ) n n n n 

Now 
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a - d - 2b = 4F 2 + F F , + ( - l ) n - F 2 - 2F 2 
n n n n n n - 1 n - 1 n 

= 2 F 2 + F F , - F F 0 n n n - 1 n n - 2 

(25) = F (2F + F n - F Q ) 
n n n - 1 n - 2 ' 

F n^ F n+2 " F n - 2 * 

= F L , n n 

a - b + c - d = (a - d - 2b ) + b + c n n n n v n n n ' n n 

(26) 

and 

= F L + F 2 + 4F 2 + F F 0 n n n n - 1 n n - 3 

F L + 2F -L n n n - 1 n 

= L 2 
n 

<an " V 2 + 4 V n = <4 Fn + F n F n - l + ^ " pLl>' 

+ 4 F ^ ( 4 F ^ _ 1 + F n F n _ 3 ) 

(27) = KFl+3 + 4 F ^ 4 F L l + FnFa-3> 

= F n < F n + 3 + 1 6 F n - l + 4 F n F n - 3 > 

= 5 F 2 L 2 
n n 

T h u s , using (25), (26), and (27), in (24), we obtain 

F L + F L \ /5 F - J / • = • 
= n n n n __ _ji 1 + V5 

Y n " 2L2 =
 L ' 2 

n n 
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as claimed. The other part of the proof is an immediate consequence of 

Theorem 11. 

Finally, we comment on the question of the equivalence of r f and f / r . 

If r = g ^ /fn or r = g m /g^9 where m and n are nonnegative integers, 

it frequently turns out to be the case that rf ~ f/r. However, this is not 

necessarily the case and hence, & fortiori, it is.not necessarily the case for 

more general r. For example, for a = (l+\[5)f2 = [1] , 

J . a = [0, 1, 2, 3, 1, 4] 

and 

1 » a = [ 3 , 1, 3, 2, 4 ] 

where 3 = f4 = g2 and 7 = g4; and other examples are easily found. How-

ever, if r = f and s = f for nonnegative integers m and n then we 

always have 

s * r * 

as the following theorem shows. 

Theorem 18. If m and n are nonnegative integers, then 

f f 
m *. n t 
n m 
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Proof. Without loss of generality, we may assume that 0 < m < n and 
that (m,n) = 1. We let 

f f f f 
= m 2 3 m + 2 b = c = f d = -HJ 

J—' D c ^ q m + l ' a f 2qm+l' 
n ^ m 

where q is chosen so that 

2q + 2 = 0 (mod n) , 

as may easily be done since (m,n) = 1. With this choice for q it follows 

from Lemma 4 that f
nlf2Gim+2 ^ fmlf2am s o t n a t a» k» c» a n d d a r e a^-

integers. Also, by (10), 

ad - be = J*L*E1±2 . V p q m _ f2 
f f 2qm+l 
n m ^ 

= f f - f2 

2qm+2 2qm 2qm+l 
= -1 . 

Finally, we show that 

f 
(28) ^ • f 

/ f 
/ n 

a F " 
- \ m 

£ + b 

\ m 
H + c 

for this choice of a, b , c, and d. Making the indicated substitutions, we 
have that (28) holds if and only if 

fmf2qm+2 / fn J\ 
f f I F " ' * / 
m t n \ m / 

— '* = / f \ ' f: 

+ f 2qm+l 
T~ " * 7 T \ TT0 

n f / n t. I j . n 2 q m 
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and this is true if and only if 

^ f2qm+l + ^f2qm ^f2qm+2 + f2qm+l e 

But this is clearly true since af2 = a£ + 1 and af0 , - + fn = f0 , 0 J * 2qm+l 2qm 2qm+2 
and the proof is complete, 

Finally8 we note that the list of stated theorems is not exhaustive. One 
could no doubt prove theorems concerning 

f f f 
n , n y n y 

? " s 9 f § » f £ 
n+2 n+4 n+5 

and so on. However? we were not able to arrive at general formulations of the 
expansions of 

f f g 
m t m t ^ m t 

r ' f ' T"8^f o r T"• * 9 

n &n &n 

for arbitrary positive integers m and n. The results stated seem to be the 
most interesting. 
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