SEQUENCES WITH A CHARACTERISTIC NUMBER

IRVING ADLER
North Bennington, Vermont

1. A Fibonacci sequence aj, aq, ag, *°*, aps e is called a Fibonacci

sequence if it satisfies the recursion relation

(1) a9 = 8 4 FTa .

A well-known property of such a sequence is that there exists a number «
such that

-a2 _ = ()"
@) 3nn+2 T Ap41 -1 e

forall n =0, 1, 2, ***. The number « is called the characteristic nhumber

.of the sequence [1] . The purpose of this paper is to explore the significance
of the characteristic number [2] and to identify all sequences that have a

characteristic number. We shall consider only sequences of rational numbers.

2. We call a sequence geometric if there exist numbers a and r such
that

(3) a_ = arn, n=20,1,2,°°"°
If a sequence is geometric, then

_3_2 :0, n:O’l’z’.o-

“) a n+1

a
n n+2

Conversely, suppose Eq. (4) holds. If a, # 0 forall n, then

a a
+2 +1
(5) an = 2 s n=20,1,2,-°"
n+l1 n
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Then the sequence satisfies (3) with a = a;, and

If a, = 0 for some n, then by Eq. (4), a1 = 0. If n =22, thenbyEq. (4),

- 2 =
n-2%n 7 %n-1 o,

a
and a, 1= 0. Hence, if 2, = 0 for some n, then a, = 0 for all n =1,
2, 3, «++. That is, either every term of the sequence is 0, or only a, is not
0. In the first case, the sequence satisfies Eq. (3) with a = 0, and r arbi-
trary. In the second case, it satisfies Eq. (3) with a = a3, and r = 0.
Therefore, a sequence is geometric if and only if it satisfies Eq. (4). Equa-
tion (4) is a special case of Eq. (2) with d = 0. Since Eq. (2), with d # 0
represents a minor deviation from the typical behaviorof a geometric sequence,
we shall call any sequence satisfying Eq. (2) with d # 0 a parageometric
éequehce.

3. We shall call a sequence almost geometric if it is not geometric, but

there exist numbers r, such that 241 = anrn for n=0,1, 2, **+, and

the sequence (rn) approaches a limit as n becomes infinite. For example,

in the Fibonacci sequence defined by

(6) Fp=1, F; =1, F _=F +F, n=20,1,2, ",

(7 F =—, Q& = —a—, B =

Then
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But

Therefore,

and nli_r}nﬂ0 r, =oa So the Fibonacci sequence, defined by (6), which is para-
geometric with d = 1, is also almost geometric.

4, We shall call a sequence alternating if Bo = 2 8y 4 T b, a # b,
forall n =0, 1, 2, **°, An alternating sequence satisfies Eq. (2) with d =
a? - b% Then d = 0 if and only if b = -a. So, an alternating sequence is
geometric if and only if b = -a, and it is parageometric in all other cases.
However, a parageometric alternating sequence is not almost geometric. In
fact, if a = 0 and b # 0, then r, cannot be defined for even n. If a # 0

and b = 0, then T, cannot be defined for odd n. If neither a nor b is

zero, then

[ fey

for even n, and

for odd n, and



150 SEQUENCES WITH A CHARACTERISTIC NUMBER [Apr.
b
573

so, while r, is defined for all n, it does not approach a limitas n becomes

infinite. Hence, every alternating sequence is not almost geometric.

5. We shall call a sequence eventually almost geometric if it is not al-

most geometric, but the sequence obtained by deleting the first k terms, for
some positive integer k, is almost geometric. For example, the sequence
0,1,0,1, 0, a;, ag, ay, ***, where s Fm for m = 0,1, 2, -«-,
is parageometric and is not almost geometric, but it is eventually almost geo-
metric. Similarly, the sequence 8, 5, 3,2, 1, 1, 0, 1, 0, 1, 0, ay, aj,

s+, where a = Fm for m =0, 1, 2, -+, is parageometric, is not

m-+11
almost geometric, but it is eventually almost geometric.

We shall call a sequence eventually alternating if it is not alternating,

but the sequence obtained by deleting the first k terms, for some positive
integer k, is alternating. For example, the sequence 8, 5, 3, 2, 1, 1, ay,
ag, °°°, where 86.in is 0 for odd n, and is 1 for even n, is parageo-
metric, is not alternating, but is eventually alternating.

6. We can now state our principal result.
Theorem. If a sequence is not geometric, and no term of the sequence
is 0, it is parageometric if and only if it satisfies the recursion relation

(8) a = kan+1 + a

n+2 n

for some rational number k. If k = 0, the sequence is alternating, and if
k # 0, the sequence is almost geometric.

A zero term may occur in the sequence only if the absolute value of its
characteristic number is a perfect square. If there is a zero term in the
sequence, then either the sequence is alternating, or the sequenceis eventually
alternating, or the sequence is eventually almost geometric. In the first case,
the sequence satisfies the recursion relation (8) with k = 0. In the second
case, for some index i >0, ag, a4, *++, aj is a fragment of an almost geo-

metric sequence satisfying the recursion relation (8) for some k # 0, and
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3410 Bi4o0 T By T is an alternating sequence satisfying (8) with k =
0. In the third case, there are two possibilities: (1) For some index j > 0,
g, aii, sy, 2 is a fragment of an alternating sequence satisfying the recur-
sion relation (8) with k = 0, and 85,10 Bag0 "7 aj+n’ ..
geometric sequence satisfying (8) for some k # 0. (2) For some non-negative

is an almost

index i, ag, ay, *°*, a; isa fragment of an almost geometric sequence sat-
isfying the recursion relation (8) for some k # 0; for some positive index

j >i, a3y, "

the recursion relation (8) with k = 0; and aj+1, aj+2, (RN a]._m, ..« is an

almost geometric sequence satisfying (8) for some k # 0. Consequently, a

ce, aj is a fragment of an alternating sequence satisfying

parageometric sequence consists of at most three consecutive segments each
of which satisfies the recursion relation (8) for some value of k.
Proof. (1) Let (an) be a sequence that is not geometric and with a #

0 forall n=20,1, 2, ---. If it is parageometric, we have

2
a - a
n n+2 n+1

a (- 1)nd .

Then
_ 2 — _ n+1
Ah+1%n+3 ~ 2n+2 (-1) d.
Therefore,
2 _ 92 =
a8 10 ~ 8y T Agfs ~ A, T 0.
Hence
an+1(an+3 - an+1) - an+2(an+2 - an)
Then, since a, # 0 forall n,
4+3 T qnt1 An2 T 8y

a
an+2 n+1
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Thus
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a - a
n+2 n

n+1

for some rational constant k and all valuesof n =10, 1, 2, -

satisfies Eq. (8).

Conversely, suppose the sequence satisfies (8). Then

Consequently,

4h+3 T Zn+1 _ An+2 T -k
An+2 2n+1
- 52 = _ - g2
an+1an+3 an+2 (anan+2 ah+1 )

forall n=0,1,2, . Ifwelet d = aa, -azi, then we have

2 = (c1)'a.

a_ -
an n+2 an+1

[Apr.

Then (an )

Since the sequence is not geometric, d # 0, and the sequence is parageo-

metric. If k = 0, then a,

=a.
+2 n

Since the sequence is not geometric,

a, # 2410 Hence it is alternating. The characteristic equation associated
with (8) is

(9)

x -kx-1=0,

whose roots are

(10)

Then, by the theory of linear recurrence relations [3],
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(11) a = ar™ + bs" .
n
where a and b have the values
a3 - 8 ar - a4
(12) a4 = — b =

\’kz + 4 "kz + 4

d=ag,; -25 = (@+b)(ar? +bs?) - (ar +bs)® = ab(r - s)2 = ab(k? + 4) .

Since d # 0, it followsthat a #0 and b #0. ¥ k >0,

|§ <1,
T
If k<O,
i<
s
b s\? a r\®
g arn+1+bsn+1 r+as(?) Br(E) + s
™m T3 T n n b Isy® ~ "a[rid
n ar + bs 1+—(—) —(—) + 1
a\r b {s
If k>0,
—f,~<1,
and n11_11&001}1:1'. If k<O,
T
—S- <1’

and nl%_I_I’lw r =s. Consequently, if k # 0, the sequence is almost geometric.
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(2) If some term a = 0, then

=az

_ n
k+1 ~ -17d ,

Elk ak+2

and hence

a2 .= (1)¥a .

k+1

If k isodd, d is a perfect square. If k is even, -d is a perfect square.

Since d # 0, a4 #0. If k# 0, we have

2 _ n-1
Y 1P - - DT

or
-1+l T 0.
Then
U 141 T Frr
and

Bea1 O g~ Byy) = 0

Then, since Y # 0, a1 = ak+1. That is, every zero term in the
sequence is flanked by a pair of equal non-zero terms. Consequently, if a, =
a, = 0, with k< m, then m -k >1. If 2 = 0, it is possible that
g = 0, and a9 0 if it exists. Then a belongs to a sequence of
alternate zero terms

Ao T Bgegaa0 T 7T T Bl T O T A T T Ao T

where £ >0, 2< k, and m > 0.
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@ o0 1) T B gper T T Ry T By Tt T B 7O

where the parentheses around the term a indicate that it is included

k-20-1
alv if i ists. L _ )
only if it exists. (That is, if k - 20 # 0.) Then A o1 10 e op’ R
A toma1’ which is a segment of the sequence (an), is an alternating se-
quence with zero terms alternating with non-zero terms. Let us extend this

alternating sequence as far as we can to both lower and higher indices by in-

k+2m-2 204 2 onig F oA o T

and & 95_3 if they exist and A op2 =

ities arise, depending on whether or not the alternating sequence begins with

cluding a 0, and by including a

k-20-2
0. Then the following four possibil-

ay on the left and whether or not it terminates on the right:
I. The alternating sequence begins with a;, and does not terminate.
II. The alternating sequence begins with ai, i > 0, and does not
terminate.
III. The alternating sequence begins with a;, and terminates with aj,
j> 0.
IV. The alternating sequence begins with a;s i > 0, and terminateswith
aj, j> i
In case I, the sequence (an) is an alternating sequence, with either the
odd-numbered terms or the even-numbered terms equal to zero. That is, it
has the form 0,a, 0, a2, 0, a, -+ or a, 0,a, 0,a, 0, ---, where a # 0.
Such a sequence satisfies the recursion relation (8) with k = 0.
i+1 =0, and ai_l # 0. The infinite sequence
is an alternating sequence of the form a, 0, a, 0, ***. We

In case I, a, #0, a
Bys Byg0
shall show that for every n < i, a_ # 0.

n
In case I, aJ. #0, a = 0, and aj+1 # 0. The finite sequence ag,

j-1

j has the form 0,a, 0,a, ¢, 0,a or a, 0, a, 0, -*-, 0, a.

We shall show that for every n > j, a # 0,
In case IV, a; £ 0, 89 = 0, a; 4 #0, aj #£0, aj-l =0, aj+1 # 0.
The finite sequence I aj has the form a, 0, a, 0, ---, 0, 2. We

ai, cee L, Q

shall show that for every n < i and every n > j, a # 0.
Suppose a, #0, aj-l =0, aj+1 # 0 (cases Il and IV). We shall call
these assumptions Assumptions A. We show that for every n > j, a, # 0.

From
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_ a2 = (-1
aj—laj+1 a]. (-1)’ "a
we get a? = (-1Ja .
a2 = (VMg = a2
(13) ajaj+2 aj+1 (-1)’d aj .
Therefore,
- = q2
atj (aj+2 aj) aj+1 .

We consider first the case where ~aJ. > 0. Then, since aj+1 #0, a

>
0, and aj+2 > aj 0.

j+2 aj >

_a2 o= ity = g2
(14) aj +1aj +3 aj 9 (-1)’ d aj
Therefore,
= 52  _ 52
aj+1aj+3 aj+2 aj > 0 .
Then aj+3 is not zero, and has the same sign as aj+1. From (13) and (14),
a,a, -2a¢_  +a, .a, ,-at_ =0,
joj+2 j+1 j+17j+3 j+2
Therefore,
Lj42 (aj+2 - aj) T A4 (aj+3 - aj+1) .
_ . . . >
Hence a]. +3 aj 41 has the same sign as aj 41 and aj 43 This, if aj 41 0,
> i ; > >
8,3 7 By and if 241 <o, 243 < a1 In either case, |aj+3| IajHI

. . > N
0. Now we proceed by induction. Assume that aJ. 2k aj +2k-2
aj > 0, that a

j+2n+1’ aj+2k+1’ aj+2k—3’ ey, aj+1 have the same sign, and
that

S B L
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. 2 - 2k, _ iq =
(15) aj+2kaj+2k+2 - aj+2k+1 = D d = (-Da = a? ’

(16) )j+2k—1

_ q2 = (- = 2

k-1l T uak ~ d = -aj.
- g2 2 =

Aok Hjaok+2 T Bjazk+l T Fjaak-1%j42j+41 T Ajeek
250k @jazki T Baak) T Fjaakel @jeakil T Rjaok-1)

Then, since aj+2k+1’ aj+2k—1’ and aj+2k+1 = aj+2k-1 have the same sign,

_ >
and a;.0p > 05 2 ori0 240k ~ 0 and
B4 ok42 > 2 ok > cee > a; > 0.
9 _ ]+2k+1 _ j+1 _ 2
1 aj+2k+1aj+2k+3 - aj+2k+2 = D d=(n7d = _aj'

Therefore,
= a2 _ g2
aj+2k+1aj+2k+3 aj+2k+2 aj > 0.
Therefore, aj +2k+1 and atj +2k+3 have the same sign. From (15) and (17),
we get

_ a2 _ a2 =
Airok Fjok+2 T jok+l T A2kl Pe2k+3 T Fjoke2

Then

okl @jankrs ~ Pjazka1) T Pjazke2®aokan T Beak) -

Therefore, has the same sign as a Hence,

%42n+3 ~ Yj42n+1 j+2k+1"

Biok+3? Bjr2k+1’ T By

have the same sign, and
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Iaj+2k+3| > |aj+2k+1| T 2 laj+1| > 0.

If aj < 0, a similar argument shows that

< 00 < g, <0, a

< e
Y42k S Fje2k-2 j j+2k+1’  Fja2k-1° SRS

have the same sign, and

Iaj+2k+1| > laj+2k—1| Z o 2 laj+1| .

Hence, for every n > j, a, # 0.

Suppose i > 0, a, #0, a4 = 0, a; 4 # 0 (cases II and IV). We
shall call these assumptions Assumptions B. Because of the symmetry with
respect to i of the indices in the equation

a2 = yitly o qyitl
a; 1859 - 8 (-1 d (-1)" " "d,

and because Assumptions A are symmetrical to Assumptions B with respect to
i if we write i instead of j in Assumptions A, the argument above proceeds

just as well in the direction of decreasing indices. Hence, for every n < i,

a, # 0. Then by (1), in cases II and IV, the sequence 2y, «+-, a;_7 satisfies
Eq. (8) for some k # 0, and is a finite segment of an almost geometric se-
quence; and in cases III and IV, the sequence aj+1, aj+2, cee, aj+n’ *++ sat-

isfies Eq. (8) for some k # 0, and is an almost geometric sequence. This
completes the proof of the theorem.
An example of case IV is given in Section 5. Another example is the

sequence

58, 24, 10, 4, 2, 0, 2, 0, 2, 0, 2, 8, 34, 144,

In this sequence, the characteristic number o« = 4. The sequence is made up
of three consecutive segments:
I 58, 24, 10, 4;
II. 2, 0, 2, 0, 2, 0, 2;
oL’ 8, 34, 144, ---;
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where Segment I is a fragment of an almost geometric sequence satisfying the
recurrence relation Apag = —2an +1 T2y Segment [Tis afragment of an alter-

nating sequence satisfying the recurrence relation Qg T 2L Segment III is

+2

an almost geometric sequence satisfying the recurrence relation A9 = 4an 41

+a .
n

7. Consider the set of all almost geometric sequences satisfying the
recurrence relation (8) with given k # 0. The associated characteristic equa-
tion is (9), where roots are r and s given in (10). If r and s are irration-
al, the theory of these sequences is analogous to that of rational Fibonacci
sequences. For example, just as the set of all rational Fibonacci sequences
can be given a field structure isomorphic to the field extension R(a) (see [4]),
the set of all rational sequences satisfying the recurrence relation (8) with
given k # 0 such that r is irrational can be given a field structure isomor-
phic to the field extension R(r). In fact, we may represent each such sequence
ag, a4, **+ by the ordered pair (ay, a;), since the sequence is fully deter-
mined by its first two terms and the recurrence relation (8). Then (ay, a)—
ay +a4r is an isomorphismifwe define addition and multiplication of sequences
by

(ag, ay) + (g, by) = (@p + by, a4 + by) .

(9> a3)(bgs by) = (aghg + ashy, by + agby + kajby) .
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for n=1, 2,3, -+ aregiven by py =1, qy =90, p; =ay, g4 =1, and
= = > = =
Py, =8P 1tP o Q) =ad 4 ta o for n > 1 [5]. If we let a; = a,
-+« =k # 0, where k is rational, then the equations take the form p, = 1,
=0 p=k a=1, and p =kp ,+p 5, q =kq ,+gq , for
n > 1. Moreover, q; = Py, and qy = kg +ay; = k = p;. Hence, for all

n>0, q Then

h = Ppo1e

for n > 0. In this case, mli_IP Cn =y, where r isa rootof x% -kx -1 =
0

0. Moreover, the relation

_ i
Pit9 ity = Py Giyp = 1)

in this case takes the form

o2 . o= ol = enfd
PPy - Pl = 17 = (-1d,
where d = 1. Hence the sequence py, py, ***, Py, *** is a parageometric
sequence with characteristic number 1, and is also an almost geometric

sequence satisfying the recursion relation p = kpn 41 7Py If k is a pos-

n+2
itive infeger, the sequence is related to the golden-type rectangle [6].

9. Every sequence that has a characteristic number d is either geo-
metric (with d = 0) or parageometric (with d # 0). If it is parageometric,
it consists of at most three consecutive segments, each of which satisfies the
recursion relation (8) for some value of k. If it is a geometric sequence
(ar™), and r # 0, it satisfies the recursion relation (8) with k = r = 1/r.
If r =0, the sequenceis a, 0, 0, -, and is composed of two consecutive
segments a and 0, 0, -+, each of which trivially satisfies Eq. (8). Hence,
every sequence that satisfiesEq. (2)and thereforehas a characteristic number
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o consists of at most three consecutive segments each of which satisfies Eq.

(8) for some value of k.

Let us now consider any sequence satisfying Eq. (8), to see if it also
satisfies Eq. (2) and hence has a characteristic number. If the sequence is
geometric, it satisfies Eq. (2) with d = 0. If the sequence is not geometric,
and no term of the sequence is 0, we have already shown in Section 6 that it
satisfies Eq. (2) with d # 0. Suppose now that the sequence is not geometric
and contains a term aj = 0. Then the method of proof used in Section 6 breaks
down. However, this case can be covered by a general proof that does not re-
quire that all terms of the sequence be different from 0.

Let ag, a4, ***, an-1, ' be a sequence satisfying Eq. (8) for some
value of K. Let d = aga, - a?i. Then, for n = 0, the sequence satisfies

Eq. (2). We now proceed by induction. Assume

_ a2 = (DY
anan+2 an+1 -1y
for some fixed n.
_ a2 = _ a2
an+1 an+3 an+2 an+1 (kan+2 * an+1) an+2
kE‘Ln+1an+2 an+2 + an+1
= _ 2
Appkay g -2 ) YAy
= - = -— — 2
an+2( an) * a'n+1 (anan+2 an+1)
(_1)n+1 d.

Hence, every sequence satisfying Eq. (8) also satisfies Eq. (2), and therefore

has a characteristic number.
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3 -3 1 0

-1 3 -3 1
= —;—(n+ @ + 2) .
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