
SEQUENCES WITH A CHARACTERISTIC NUMBER 
IRVING ADLER 

North Bennington, Vermont 

1. A Fibonacci sequence a09 al9 a2, • • * , a , • • • is called a Fibonacci 
sequence if it satisfies the recursion relation 

CO a (0 = a ,., + a 
n+2 n+1 n 

A well-known property of such a sequence is that there exists a number a 
such that 

(2) a a ±„ - a2
± 1 = {-if a 

n n+2 n+1 N ' 

for all n = 0, 1, 29 • °e
 8 The number a is called the characteristic number 

of the sequence [1]. The purpose of this paper is to explore the significance 
of the characteristic number [2] and to identify all sequences that have a 
characteristic number. We shall consider only sequences of rational numbers* 

2„ We call a sequence geometric if there exist numbers a and r such 
that 

(3) a = ar n
9 n = 09 1, 2, 0 8 9 . . 

If a sequence is geometric, then 

(4) a a ^0 - â  = 09 n = 09 1, 29 
v ' n n+2 n+1 J 9 

Conversely, suppose Eq. (4) holds8 If a / 0 for all n9 then 

/K\ an+2 _ a n+l _ n - 9 
(5) - ——, n - 09 1, 29 ••• . 

an+l an 
147 



148 SEQUENCES WITH A CHARACTERISTIC NUMBER [Apr. 

Then the sequence satisfies (3) with a = ao, and 

r = — . a0 

If a = 0 for some n, then by Eq. (4), a - = 0. If n > 2 , then by Eq. (4), 

a 0 a - a2 = 0, n-2 n n-1 

and a - = 0 . Hence, if a = 0 for some n, then a = 0r for all n = 1, 
2, 3, • • •. That i s , either every term of the sequence is 0, or only a0 is not 
0. In the first case, the sequence satisfies Eq. (3) with a = 0, and r arbi-
trary. In the second case, it satisfies Eq. (3) with a = a0, and r = 0. 
Therefore, a sequence is geometric if and only if it satisfies Eq. (4). Equa-
tion (4) is a special case of Eq. (2) with d = 0. Since Eq. (2), with d f 0 
represents a minor deviation from the typical behavior of a geometric sequence, 
we shall call any sequence satisfying Eq. (2) with d f 0 a parageometric 
sequence. 

3. We shall call a sequence almost geometric if it is not geometric, but 
there exist numbers r such that r for n = 0, 1, 2, • • • , and 
the sequence (r ) approaches a limit as n becomes infinite. For example, 
in the Fibonacci sequence defined by 

(6) F0 = 1, Fi = 1, F n + 2 = F n + 1 + F n , n = 0, 1, 2, . • • , 

the terms of the sequence are given by the Binet formula 

(7) \=^-^-> ^^r^* ^ = H^ 
n ^ 2 2 

Then 
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an+1 - f+1
 =

 a ~ P ( I f 
r n B 0n 

a - (3 x 

• • '(i) ,n+l (-ir 

1 + I i I (.yn+1 W' 
But 

Therefore, 
o? 6 + 2N/5 

< 1 

= 0 , 

and lim r = ae So the Fibonacci sequence, defined by (6), which is para-
geometric with d = 1, is also almost geometric. 

4. We shall call a sequence alternating if a , = a, a„. - = b, a ^ b, 
for all n = 0, 1, 2, • e •. An alternating sequence satisfies Eq. (2) with d = 
a2 - b2. Then d = 0 if and only if b = -a. So, an alternating sequence is 
geometric if and only if b = -a , and it is parageometric in all other cases, 
However, a parageometric alternating sequence is not almost geometric. In 
fact, if a = 0 and b f 0, then r cannot be defined for even n. If a / 0 
and b = 0, then r cannot be defined for odd n. If neither a nor b is 
zero, then 

b 
r = — 
n a 

for even n, and 

* . - 5 

for odd n, and 
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a / b 
b f a ' 

so, while r is defined for all n, it does not approach a limit as n becomes 
infinite. Hence, every alternating sequence is not almost geometric. 

5. We shall call a sequence eventually almost geometric if it is not a l -
most geometric, but the sequence obtained by deleting the first k terms, for 
some positive integer k, is almost geometric. For example, the sequence 
0, 1, 0, 1, 0, a5, a6, a?, 8 # - , where a = F for m = 0, 1, 2, • • • , 
is parageometric and is not almost geometric, but it is eventually almost geo-
metric. Similarly, the sequence 8, 5, 3, 2, 1, 1, 0, 1, 0, 1, 0, a^, a^, 
••• , where a -- = F for m = 0, 1, 2, ••• , is parageometric, is not 
almost geometric, but it is eventually almost geometric. 

We shall call a sequence eventually alternating if it is not alternating, 
but the sequence obtained by deleting the first k terms, for some positive 
integer k, is alternating. For example, the sequence 8, 5, 3, 2, 1, 1, a7, 
a&, • • • , where afi is 0 for odd n, and is 1 for even n, is parageo-
metric , is not alternating, but is eventually alternating. 

6. We can now state our principal result. 
Theorem. If a sequence is not geometric, and no term of the sequence 

is 0, it is parageometric if and only if it satisfies the recursion relation 

(8) a l 0 = ka M + a 
n+2 n+1 n 

for some rational number k. If k = 0, the sequence is alternating, and if 
k f 0, the sequence is almost geometric. 

A zero term may occur in the sequence only if the absolute value of its 
characteristic number is a perfect square. If there is a zero term in the 
sequence, then either the sequence is alternating, or the sequence is eventually 
alternating, or the sequence is eventually almost geometric. In the first case, 
the sequence satisfies the recursion relation (8) with k = 0. In the second 
case, for some index i > 0, a0;, al9 • • • , aj is a fragment of an almost geo-
metric sequence satisfying the recursion relation (8) for some k ^ 0, and 
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a i+l 5 a i+2 ' " " ' ai+n5 " " i s a n alternating sequence satisfying (8) with k = 
0. In the third case, there are two possibilities: (1) For some index j > 0, 
ao, al5

 , , c , a. is a fragment of an alternating sequence satisfying the recur-
sion relation (8) with k = 0, and a. , - , a. i n , • • • , a., , ••• is an almost 

l+l i+2 j+n 
geometric sequence satisfying (8) for some k f 0. (2) For some non-negative 
index i, a0, a j , • • • , a. is a fragment of an almost geometric sequence sat-
isfying the recursion relation (8) for some k f 0; for some positive index 
j > i , a., a. - , • • • , a. is a fragment of an alternating sequence satisfying 
the recursion relation (8) with k = 0; and a . , - , a . , 0 , 8 • • , a., > ••• is an 

j + i j+z j+n 
almost geometric sequence satisfying (8) for some k ^ 0. Consequently, a 
parageometric sequence consists of at most three consecutive segments each 
of which satisfies the recursion relation (8) for some value of k. 

Proof. (1) Let (a ) be a sequence that is not geometric and with a f 
0 for all n = 0, 1, 2, • • •. If it is parageometric, we have 

a a l 0 - a2 ,- = (-1) d . n n+2 n+1 

Then 

an+lan+3 " an+2 = ^ ^ d 

Therefore, 

Hence 

Vn+2 " an+l + V l a n + 3 " <+2 = ° 

a n+l ( a n + 3 - V l ' = an+2(an+2 " a n ) 

Then, since a ^ 0 for all n, 

an+3 " an+l =
 an+2 an 

an+2 an+l 
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Thus 

a l 0 - a n+2 n _ . 
a n+l 

for some rational constant k and all values of n = 0, 1, 2, • • • . Then (a ) 
' ' n 

satisfies Eq. (8). 
Conversely, suppose the sequence satisfies (8). Then 

an+3 " V l an+2 " an . 
_—. = = ^ 9 

an+2 an+l 

Consequently, 

an-Han+3 " an+2 = "(anan+2 " a n + l ) 

for all n = 0, 1, 2, ' • •. If we let d = aoa2 - a|, then we have 

V n + 2 ~ a n + l = ( - 1 ) D d * 

Since the sequence is not geometric, d f- 0, and the sequence is parageo-
metriCo If k = 0, then a ? = a . Since the sequence is not geometric, 
a f a -. Hence it is alternating. The characteristic equation associated 
with (8) is 

(9) x2 - kx - 1 = 0 , 

whose roots are 

/ inv k + ^k2 + 4 k - # 7 1 (10) r = — — 5 , s = * 

Then, by the theory of linear recurrence relations [3] , 
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(11) a = a r + bs , 

153 

where a and b have the va lues 

(12) a = 
^/k2 + 4 

b = 
a 0 r - a i 

\P" + 4 

d = a0a2 - ai = (a + b)(ar2 + bs 2 ) - (ar + bs)2 = ab(r - s)2 = ab(k2 + 4) 

Since d f 0, it follows that a / 0 and b / 0. If k > 0, 

< 1 

If k < 0, 

< 1 

n+1 a r + bs n+1 , , n+1 r + 

n a a r + bs 

b J s \ n a | r \ n 

+ s 

1 + a \ r j b \ s / + 1 

If k > 0, 

< 1 , 

and l im r = r . If k < 09 
n -*oo n 

< 1 , 

and l im r = s. Consequently, if k f 0, the sequence i s a lmos t geomet r i c . n —* oo n 
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(2) If some term a, = 0, then 

a k V 2
 = 4 + 1 = (-1)Ild > 

and hence 

- a | + 1 . = (- l )kd . 

If k is odd, d is a perfect square. If k is even, -d is a perfect square. 
Since d f 0, a - f 0. If k f 0, we have 

a k - i a k + i - 4 = ( - 1 ) n _ l d • 

or 

Then 

and 

\-iVi= ( - 1 ) k _ l d 

ak-lak+l 4+1 ' 

ak+l(ak-l " V l * = °-

in the Then, since a, - ^ 0 , a, - = a, y That i s , every zero term i 
sequence is flanked by a pair of equal non-zero terms. Consequently, if a = 

a = 0, with k < m, then m - k > 1. If a, = 0, it is possible that 
ak+2 = ° ' anc* a -2 = ° **• ^ exists. Then a, belongs to a sequence of 
alternate zero terms 

ak-2£ " ak-2+2£ " a k - 2 a k ak+2 " ' • " \ + 2 m ° ' 

where I > 0, 2£ < k, and m > 0. 
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a k-2£+l = " \ - l ~ \ + l ak+2m+l t 0 

155 

9 

where the parentheses around the term \_2n_1 indicate that it is included 
only if it exists. (That i s , if k - 2£ ^ 0.) Then \_2i_^ a

k_2£J ° " 5 

ak+2m+l? w n i c n i s a segment of the sequence (a ), is an alternating se -
quence with zero terms alternating with non-zero terms. Let us extend this 
alternating sequence as far as we can to both lower and higher indices by in-
cluding a, lQ l 0 and a. ,_ i 0 if a, _ i n = 0, and by including a. nn 0 

& k+2m+2 k+2m+3 k+2m+2 J & k-2£-2 
and \_90o if they exist and a, 9 = 0. Then the following four possibil-
ities a r i se , depending on whether or not the alternating sequence begins with 
a0 on the left and whether or not it terminates on the right: 

I. The alternating sequence begins with a0, and does not terminate. 
II. The alternating sequence begins with a., i > 0, and does not 

terminate. 
III. The alternating sequence begins with a0, and terminates with a., 

j > 0. 
IV. The alternating sequence begins with a., i > 0, and terminates with 

a., i > L 
J 

In case I, the sequence (a ) is an alternating sequence, with either the 
odd-numbered terms or the even-numbered terms equal to zero. That i s , it 
has the form 0, a, 0, a, 0, a, ••• or a, 0, a, 0, a, 0, • • • , where a f 0. 
Such a sequence satisfies the recursion relation (8) with k = 0. 

In case H, a. f 0, a. - = 0, and a. - ^ 0. The infinite sequence 
a., a. - , ••• is an alternating sequence of the form a, 0, a, 0, • • • . We 
shall show that for every n < i, a ^ 0. 

Incase HI, a. f 0, a. - = 0, and a.,- f 0. The finite sequence a0, 
J J- 1 J+1 

aA, • • • , a. has the form 0, a, 0, a, • • • , 05 a or a, 0, a, 0, • • • , 0, a. 
We shall show that for every n > j , an f. 0. 

In case IV, a. ^ 0, a .+ 1 = 0, a . ^ 7̂  0, a ^ 0, a = 0, a ^ 0. 
The finite sequence a., • • • , â  has the form a, 0, a, 0, • • • , 0, a. We 

I J 
shall show that for every n < i and every n > j , an f 0. 

Suppose a. ^ 0, a. - = 0, a., - ^ 0 (cases IE and IV). We shall call 
these assumptions Assumptions A. We show that for every n > j , an ^ 0. 
From 
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a. - a. t 1 - a? = (-1)J~ d 

we get a? = (-l)-'d . 

(13) a . a . + 2 - a j + 1 = (-1)1 d = a j . 

T h e r e f o r e , 

a . la .lin, — a . ) a.,.. • 
J J+2 J 3+1 

We cons ide r f i r s t the ca se where -a. > 0. Then, s ince a . , - ^ 0, a. l 0 - a. > 
3 J+l 3+2 j 

0, and a.^Q > a. > 0. 
3+2 3 

(14) a j + 1 a j + 3 - a ^ = ( - l ) ^ d = -a j . 

The re fo re , 

a--ii a-_LQ = a ? , 0 - a? > 0 . j+ l j+3 j+2 j 

Then a . + 3 i s not z e r o , and has the s a m e sign a s a. - . F r o m (13) and (14), 

a . a . i 0 - a ? , - + a . , - a . l 0 - a ? l 0 = 0 . j j+2 j+ l j+ l j+3 j+2 

T h e r e f o r e , 

V2V2-V = ViV'V^-
Hence a . l 0 - a . , - has the s a m e sign a s a . - and a . l 0 . T h i s , if a . ( 1 > 0, j+3 j+ l 5 j+ l j+3 j+ l 
aj+3 > aj+r a n d i f aj+i < °' aj+3 < aj+r fc e i t h e r c a s e ' h + s M V i l > 

0. Now we proceed by induction. Assume that a „. > a - . o ^ o > ''' > 

a. > 0, that a . + 2 n + 1 , a . + 2 f c + 1 , a
1 + 2 k - 3 ' " ' » a i + l ^ ^ t h e s a m e s i g n ' a n d 

that 

V2k.ll> IV2k.ll> •••> | V l | > 0 • 
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( 1 5 ) a
j + 2 k a

j + 2 k + 2 " a j + 2 k + l = < ~ 1 ) j + 2 k d = <-X>Jd = a ] • 

<16) a
j + 2 k - l a

j + 2 k + l - a j + 2 k = ( - D j + 2 k " 1 d = - ] • 

a j+2kaj+2k+2 " a j+2k+l + a j + 2 k - l a j + 2 j + l " a j+2k = ° -

a j+2k (aj+2k+2 " a j+2k ) = a j+2k+l ( a j+2k+l " a j + 2 k - l ) ' 

Then , s ince a j + 2 k + 1 > a j + 2 k _ 1 , and a . + 2 k + 1 = a . + 2 k _ 1 have the s a m e s ign, 
and a . + 2 k > 0, a . + 2 k + 2 - a j + 2 k > 0 , and 

a j + 2 k + 2 > a j + 2k > " > a3 > ° -

<17> a
j + 2 k + l a j + 2 k + 3 - a ] + 2 k + 2 = ( - 1 > j + 2 k + l d = <- 1 > J + l d = " a l • 

T h e r e f o r e , 

a j+2k+l a j+2k+3 aj+2k+2 " a j > ° 

T h e r e f o r e , a. „. - and a. ? , „ have the s a m e sign. F r o m (15) and (17), 

we ge t 

a j+2kaj+2k+2 " a j+2k+l + a j+2k+l a j+2k+3 " aj+2k+2 " ' 

Then 

a j+2k+l (aj+2k+3 " a j + 2 k + l ) aj+2k+2(aj+2k+2 a j+2k ) 

T h e r e f o r e , a . + 2 n + 3 - a 1 + 2 n + 1 has the s a m e sign a s a 4 + 2 k + l e H e n c e > 

a j+2k+39 a j + 2 k + l ' " " 9 a j + l 

have the s a m e s ign, and 
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\^+2k+B\> | V 2 k + l | >"- > | a
J + l | > ° • 

If a. < 0, a similar argument shows that 

aj+2k < aj+2k-2 < ' " < a j < ° ' aj+2k+l' a j+2k-l ' " " ' a j+l 

have the same sign, and 

|«W+i| > I V2k-i| > • - > | V i | > °-

Hence, for every n > j , a ^ 0. 
Suppose i > 0, a. f 0, a. - = 0, a. - ^ 0 (cases II and IV). We 

shall call these assumptions Assumptions B. Because of the symmetry with 
respect to i of the indices in the equation 

a i - l a i + l " a i = (-1>i"1(i = (-Di+1d , 

and because Assumptions A are symmetrical to Assumptions B with respect to 
i if we write i instead of j in Assumptions A, the argument above proceeds 
just as well in the direction of decreasing indices. Hence, for every n < i, 
a f 0. Then by (1), in cases II and IV, the sequence a0, • • • , aj_2. satisfies 
Eq. (8) for some k f 0, and is a finite segment of an almost geometric se -
quence; and in cases III and IV, the sequence a. - , a. 2 , • • • , a , • • • sat-
isfies Eq. (8) for some k f 0, and is an almost geometric sequence. This 
completes the proof of the theorem. 

An example of case IV is given in Section 5. Another example is the 
sequence 

58, 24, 10, 4, 2, 0, 2, 0, 2, 0, 2, 8, 34, 144, ••• . 

In this sequence, the characteristic number a = 4. The sequence is made up 
of three consecutive segments: 

I. 58, 24, 10, 4; 
H. 2, 0, 2, 0, 2, 0, 2; 

n r 8, 34, 144, ••• ; 
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where Segment I is a fragment of an almost geometric sequence satisfying the 
recurrence relation a = -2a - + a . Segment His a fragment of an alter-
nating sequence satisfying the recurrence relation a Q = a ; Segment III is 

n~r̂  n 
an almost geometric sequence satisfying the recurrence relation a = 4a 
+ a . n 

7. Consider the set of all almost geometric sequences satisfying the 
recurrence relation (8) with given k f 0. The associated characteristic equa-
tion is (9), where roots are r and s given in (10). If r and s are irration-
al , the theory of these sequences is analogous to that of rational Fibonacci 
sequences. For example, just as the set of all rational Fibonacci sequences 
can be given a field structure isomorphic to the field extension R(a) (see [4]), 
the set of all rational sequences satisfying the recurrence relation (8) with 
given k / 0 such that r is irrational can be given a field structure isomor-
phic to the field extension R(r). In fact, we may represent each such sequence 
a0, a l s ••• by the ordered pair (a0, a j ) , since the sequence is fully deter-
mined by its first two terms and the recurrence relation (8). Then (a0, aj)—» 
a0 + a*r is an isomorphism if we define addition and multiplication of sequences 
by 

(a0, aA) + (b0, bj) = (a0 + b0, aj + bt) . 

(a0, ai)(b0, bi) = (a0b0 + a ^ , a ^ + a^o + k a ^ ) . 

3. If 

a 1 +
 X 

a2 + 1 _ 
a3 

is a continued fraction, the convergents 

pn 
c = — 
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for n = 1, 2, 3, • • • are given by p0 = 1, q0 = 0, pA = al9 qt = 1, and 
p n = Wl + p n - 2 ' q n = a n V l + q n - 2 for n > 1 [5]. If we let H = a2 = 
• • • = k / 0, where k is rational, then the equations take the form p0 = 1, 
q0 = 0, P l = k, q4 = 1, and p n = kpjQ_1 + p n _ 2 ? qn = k q ^ + qn_2 for 
n > 1. Moreover, qt = p0, and q2 = kqA + a0 = k = p4. Hence, for all 
n > 0, qn = P n - r Then 

c n 
_ Pn _ pn 

q n Pn-1 

for n > 0. In this case, lim C = r , where r is a root of x2 - kx - 1 
n—»oo n 

0. Moreover, the relation 

P i + 2 V l " P i + l V 2 = ^ 

in this case takes the form 

PiPi+2 " Pi+1 = <"1>i = ("1) i d • 

where d = 1. Hence the sequence p l 9 p2, • • • , p n , • • • is a parageometric 
sequence with characteristic number 1, and is also an almost geometric 
sequence satisfying the recursion relation p « = kp - + p . If k is a pos-
itive integer, the sequence is related to the golden-type rectangle [6], 

9. Every sequence that has a characteristic number d is either geo-
metric (with d = 0) or parageometric (with d f 0). If it is parageometric, 
it consists of at most three consecutive segments, each of which satisfies the 
recursion relation (8) for some value of k . If it is a geometric sequence 
(ar ), and r f 0, it satisfies the recursion relation (8) with k = r = 1/r. 
If r = 0, the sequence is a, 0, 0, ••• , and is composed of two consecutive 
segments a and 0, 0, • ° • , each of which trivially satisfies Eq. (8). Hence, 
every sequence that satisfies Eq. (2) and therefore has a characteristic number 
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a consists of at most three consecutive segments each of which satisfies Eq. 
(8) for some value of k •• 

Let us now consider any sequence satisfying Eq. (8), to see if it also 
satisfies Eq. (2) and hence has a characteristic number. If the sequence is 
geometric, it satisfies Eq. (2) with d = 0. If the sequence is not geometric, 
and no term of the sequence is 0, we have already shown in Section 6 that it 
satisfies Eq. (2) with d f 0. Suppose now that the sequence is not geometric 
and contains a term a. = 0. Then the method of proof used in Section 6 breaks 
down. However, this case can be covered by a general proof that does not r e -
quire that all terms of the sequence be different from 0. 

Let aQ, al9
 8 , a , a n _ i , ••• be a sequence satisfying Eq. (8) for some 

value of K. Let d = a0a2 - aj. Then, for n = 0, the sequence satisfies 
Eq. (2). We now proceed by induction. Assume 

a a l 0 - a2 ,- = (-1) d n n+2 n+1 N 

for some fixed n. 

Hence 
has_a 

a n+l a n+3 an+2 = a , n (ka ^ n+1 n+2 
= k an+l an+2 

= a
n +2 ( k a n+l 

= an+2("an) + 

= ( - l ) n + 1 d . 

n+1 
- a 2 + 

n+2 
- an+2> 
an+l = 

- a2 
an+2 

a2 
a n+l 

+ a n+l 

- ( a n a n + 2 - a n + l > 

, every sequence satisfying Eq. (8) also satisfies Eq. (2), and therefore 
characteristic number. 
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-3 0 

- 1 

0 - 1 3 - 3 

0 0 

= ^ ( n + l)(n + 2) 
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