NUMBERS THAT ARE BOTH TRIANGULAR AND SQUARE THEIR TRIANGULAR ROOTS AND SQUARE ROOTS

R. L. BAUER
St. Louis, Missouri

There is an infinite series of numbers, N, which for integral T and S:
(1)

$$
\frac{1}{2} \mathrm{~T}(\mathrm{~T}+1)=\mathrm{N}=\mathrm{S}^{2} .
$$

The first nine members of the series are tabulated below, together with their triangular roots, square roots, and index numbers, n.

$\underline{\mathrm{n}}$	T	N	S
	0	0	0
1	1	1	1
2	8	36	6
3	49	1225	35
4	288	41616	204
5	1681	1413721	1189
6	9800	48024900	6930
7	57121	1631432881	40391
8	332928	55420693056	235416

By inspection of the tabulation, we note the recursive formula for N :
(2)

$$
N_{n}=34 N_{n-1}-N_{n-2}+2,
$$

from which we can develop a generalized formula for N :

$$
\begin{equation*}
\mathrm{N}_{\mathrm{n}}=\frac{1}{32}\left[(17+12 \sqrt{2})^{\mathrm{n}}+(17-12 \sqrt{2})^{\mathrm{n}}-2\right] \tag{3}
\end{equation*}
$$

Similarly,

Apr. 1971
(4) NUMBERS THAT ARE BOTH TRIANGULAR AND SQUARE

$$
T_{n}=7 T_{n-1}-7 T_{n-2}+T_{n-3}
$$

and
(5)

$$
\mathrm{T}_{\mathrm{n}}=\frac{1}{4}\left[(3+2 \sqrt{2})^{\mathrm{n}}+(3-2 \sqrt{2})^{\mathrm{n}}-2\right]{ }^{*}
$$

Also:
(6)

$$
S_{n}=6 S_{n-1}-S_{n-2}
$$

and

$$
S_{n}=\frac{1}{8} \sqrt{2}\left[(3+2 \sqrt{2})^{n}-(3-2 \sqrt{2})^{n}\right]
$$

Other recursive formulas and relations were found by inspection of the tabulation:
(7)

$$
s_{2 n}=s_{n}\left(s_{n+1}-S_{n-1}\right)
$$

$$
\begin{equation*}
T_{2 n-1}=\left(T_{n}-T_{n-1}\right)^{2} \tag{8}
\end{equation*}
$$

(9)

$$
\mathrm{s}_{2 \mathrm{n}-1}=\mathrm{N}_{\mathrm{n}}-\mathrm{N}_{\mathrm{n}-1}
$$

(10)

$$
\mathrm{T}_{2 \mathrm{n}}=8 \mathrm{~N}_{\mathrm{n}}
$$

(11)

$$
T_{n}-T_{n-1}=S_{n}+S_{n-1}
$$

$$
\mathrm{T}_{2 \mathrm{n}-1}=\left(\mathrm{S}_{\mathrm{n}}+\mathrm{S}_{\mathrm{n}-1}\right)^{2}
$$

$$
\begin{equation*}
S_{2 n-1}=\left(S_{n}-S_{n-1}\right)\left(T_{n}-T_{n-1}\right) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
N_{n}-N_{n-1}=\left(S_{n}-S_{n-1}\right)\left(T_{n}-T_{n-1}\right) \tag{14}
\end{equation*}
$$

*This simplification of the author's more complicated formula was furnished by Hoggatt

$$
s_{2 n-1}=\left(S_{n}-S_{n-1}\right) T_{2 n-1}^{\frac{1}{2}}
$$

$$
\begin{equation*}
N_{n}-N_{n-1}=\left(S_{n}-S_{n-1}\right)\left(S_{n}+S_{n-1}\right) \tag{17}
\end{equation*}
$$

By the use of the recursive formulas, the tabulation was extrapolated for negative index numbers. It was found to be perfectly reflexive about 0 except that the values of S became negative for negative index numbers, while the values of N and T remained positive. All generalized formulas and recursive formulas and relations held for the reflected series.
[Continued from page 195.]

Solution by Using the Fibonacci Terms
2
8
34
144
610
2584
10946
46368
196418
832040
......
3389......
$3 \times 3389 \cdots=1016949 \cdots$.

