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1. INTRODUCTION 

One of the obvious dis t inct ions between Egyptian ma thema t i c s and the 

ma thema t i c s of o the r cu l tu re s i s i t s addit ive c h a r a c t e r of the dependent a r i t h -

me t i c . A typical example i s recognized when we examine the a lgor i thm used 

by the Egyptians in doing mult ipl icat ion in compar i son to o ther a lgor i thms . 

Multiplication (Egyptian Style) i s done by a doubl ing-summing p r o c e s s 

s i m i l a r to the one shown in the following example . Le t u s solve the follow-

ing problem: 19 x 65. The Egypt ians noted that the number 19 was equal 

to 1 + 2 + 16 (the sum of powers of two), hence , by the addition of a p p r o -

p r i a t e mul t ip les of 65 the Egyptians a r r i v e d at the de s i r ed re su l t . We m a y 

a r r a n g e the p rob lem in the following way: 

<1* 
. 2 * 

doubling \ . 
doubling \ f t 

doubling ^ ^ 

19 

Upon careful examinat ion of the p r o c e s s e s used in this a lgor i thm, we 

find that t he r e a r e two bas ic concepts that contr ibute to i t s efficiency. N a m e -

ly , they a r e the concepts of d is t r ibut ivi ty and comple teness . The l a t t e r con-

ceived by P r o f e s s o r V e r n e r E . Hoggatt , J r . [ 1 ] . 

We can eas i ly identify the ro le which i s played by the d is t r ibut ive law 

in the a lgor i thm, for example , in the preceding p rob lem 65 x 19 = 65 (1 + 

2 + 16). However , the contribution made by the concept of comple teness i s 

not self-evident . Let us tu rn to the definition of comple teness before we e x -

amine i t s ro le in the Egyptian a lgor i thm. 
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Definition. A sequence S of posi t ive in t ege r s i s said to be complete 

if and only if every e lement n , where n is an e lement of the posi t ive i n t e -

g e r s can be r ep re sen t ed a s a sum of d is t inct e l ements of S. 

The sequence used in the Egyptian method of mult ipl icat ion the au thor 

shall de sc r ibe a s T , where T = 2 (n > 0 ) . In o r d e r to show that T is 

comple te , we mus t f i r s t prove the following l e m m a . 

L e m m a 1. T0 + T-, + T? + TQ + • • • + T - = T - 1. 
— u i L 6 n - 1 n 
Proof. We shall p rove this l e m m a by mathemat ica l induction. H e r e , 

we have 

P(n) : T0 + T j + T2 + T3 + • • • + T ^ = TR - 1 . 

Then P ( l ) : T0 = Tt - 1 i s eas i ly seen to be t rue since 1 = 2 - 1 . 

T h u s , we have accomplished our inductive bas i s . 

Now, suppose that 

P(K) : T0 + T i + T2 + T3 + - • . + T ^ = Tfe - 1 

i s t rue (the inductive assumpt ion) , and we mus t then prove: 

P(K + 1) : T0 + T i + T2 + T3 + • • • + T k = T k + 1 

By our inductive assumpt ion , we know that 

T0 + T i + T2 + T3 + - - - + T k _ x = T k - 1 

Hence , by substi tution into P(k + 1), we have that 

T, - 1 + T. = T. - - 1. k k k+1 

It follows that 

2 T k - 1 = T
k + i - 1 • 

hence , 2T,. = T . + 1 . Since T k = 2 k , we have that 2Tfc = T k + 1 - T h e r e f o r e , 
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we have shown that if P(K) is t r u e , then P(K + 1) i s t r u e , and we have 

completed the inductive t rans i t ion . 

Employing L e m m a 1, we may prove the following theorem. 

T h e o r e m 1. The sequence T , whe re T = 2 n (n > 0) is a complete 

sequence. 

Proof. As an inductive b a s i s , we know that 

1 = 1 
2 = 2 
3 = 1 + 2 
4 = 4 
5 = 1 + 4 
6 = 2 + 4 
7 = 1 + 2 + 4 , e tc . 

Hence , we m u s t a s s u m e that the re a r e r ep re sen ta t ions for a l l the posi t ive 

in t ege r s N: 

1 < N < 2 n + 1 - 1. 

T h e r e f o r e , we mus t show that the re a r e r ep resen ta t ions for all posi t ive i n t e -

g e r s M: 

2 n + 1 - 1 < M < 2 n + 2 - 1 . 

By subtrac t ing 2 from the above inequali ty, we have that 

- 1 < M - 2 n + 1 < 2 n + 2 - 2 n + 1 - 1 . 

n-t-1 n + 1 

Le t Q = M - 2 ; hence , - 1 < Q < 2 - 1 . This leads us to the con-

clusion that Q is r ep re sen tab le as a sum of powers of 2 by our inductive 

assumpt ion . And, from t h i s , we can conclude that M is r ep re sen t ab l e as a 

sum of powers of 2 s ince M = Q + 2 and 

2 n+1 1 = l + 2 + 2 2 + 2 3 + - - - + 2 n 

Hence, we have completed our inductive t ransi t ion. 
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2. FIBONACCI-EGYPTIAN METHOD 

As we noted in the introduct ion, the n e c e s s a r y and sufficient conditions 

for the Egyptian a lgor i thm to "work" a r e comple teness and dis t r ibut ivi ty . 

The au thor , upon reaching this conclusion, went in s e a r c h of o ther 

sequences that would sat isfy the above condit ions. The f i r s t sequence e x a m -

ined proved to be fruitful. It was the Fibonacci sequence. It i s obvious that 

the d is t r ibut ive law i s sa t isf ied, s ince we a r e working solely with posi t ive 

in tegers ; however , i t i s not so obvious that the Fibonacci sequence i s c o m -

ple te . Let u s then prove this fact. 

As be fore , we m u s t prove a l e m m a before proving the main theorem. 

It i s the following: 

L e m m a 2. 

F n+2 - 1 = F i + F2 + F 3 + F 4 + • • • + F n . 

Proof. We shal l p rove the l e m m a by mathemat ica l induction. 

P(n) : F n + 2 - 1 = FA + F 2 + F 3 + F 4 + • • • + F n . 

Then P(J.) : F 3 - 1 = F j which i s t r u e , s ince 2 - 1 = 1. T h u s , we have 

accompl ished our inductive bas i s . Now we m u s t suppose that 

P(K) : F k + 2 - 1 = F t + F2 + F 3 + F 4 + • • • + F k 

i s t rue (the inductive assumpt ion) , and we mus t then prove: 

P(K + 1) : F k + 3 - 1 = F i + F 2 + F 8 + F 4 + • • • + F k + 1 . 

By the addition of F, - to both s ides of the equation P(K), we have 

F k + 2 + F k + 1 - 1 = F t + F 2 + F 3 + • • • + F k + F k + 1 , 

which Heads us to 

F k + 3 " 1 = F 1 + F 2 + F 3 + . . . + F k + 1 
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by the r ecu r s ion re la t ion for Fibonacci n u m b e r s , namely 

F = F + F 
n+3 n+2 n+1 

Using th is l e m m a , we m a y prove the following theorem. 

T h e o r e m 2. The Fibonacci n u m b e r s form a complete sequence. 

Proof. The inductive proof will be cons idered in the following way. We 

obse rve that 

1 = F i = F2 

2 = F3 = F 2 + Fj[ 

3 = F4 = F3 + F2 

4 = F 4 + F 2 = F 3 + F 2 + F l f e tc . 

We shall use th is a s our inductive b a s i s . Next, we m u s t a s s u m e that t he re 

a r e r ep resen ta t ions for all posi t ive in t ege r s N , such that 

n+2 

i s t r u e . We mus t therefore show that t he re a r e r ep resen ta t ions for al l p o s -

itive in tege r s M, such that 

F - 1 < M < F « - 1. n+2 n+3 

By subtrac t ing an F 2 from the above inequali ty, we have that 

- 1 < M - F < F - F - 1 . 
1 M n+2 *n+3 n+2 

Let Q = M - F + 2 ; hence , 

- 1 < Q < F n + 1 - 1 . 

This leads us to the conclusion that Q is r ep re sen t ab l e a s a sum of F ibon-
acc i n u m b e r s by ou r inductive assumption. And from th i s , we m a y conclude 
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that M is r ep resen tab le a s a sum of Fibonacci n u m b e r s , s ince 

M = Q + F n + 2 

and 

• F _, 0 - 1 = Fi +• Fo + F 8 + • • • + F . 
n+2 i & t n 

Hence , we have completed our inductive a rgument . 

Le t us examine the Fibonacci-Egypt ian method for mult ipl icat ion. F o r 

example , cons ider the p rob lem 19 x 65. We note that 

19 = 1 + 5 + 13 , 

a l l of which a r e Fibonacci number s . Toge ther with the Fibonacci r ecu r s ion 

re la t ion , and the following s e t - u p , we m a y approach the p rob lem in the fol-

lowing way: 

1* * 65 
+ + 

2 130 
+ + 

3 195 
+ 5* *325 + 

+ 520 
+ 13" *845 + 

19 1235 

One may obse rve that in the preceding example , the en t i re Fibonacci 

sequence was not used. Upon examinat ion, one will find that the f i rs t n u m -

b e r of the sequence has been t runcated. This does not , however , effect 

e i the r the comple teness of the sequence nor the dis t r ibut ivi ty . The author 

shal l r e f e r to the Fibonacci sequence with one e lement omit ted as the Deleted 

F Sequence. Hence , le t u s prove the following theorem. 

T h e o r e m 3. The deleted F sequence , where f = F (n > 1) with 
a r b i t r a r y F not used , i s complete . 
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Proof. From the previously proven theorem, it was noted that we may 
represent any positive integer n, where l < n < F + 1 - l by using only 
the Fibonacci numbers Ft through F _-, without using F . Hence, we 
shall consider F n as the arbitrary Fibonacci number to be omitted. We may 
observe that F n + 1 can represent itself. Since this is t rue, it is noted that 
we now have representations for 1 < n < 2F - - 1. Since we have increased 
our upper bound from what it was formerly, we may use this particular tech-
nique so that we may have representations for any positive integer without 
using F . For example, if F = 1, which is proposed to be the deleted 
number, then the sequence would remain complete. 

Therefore, we have another method for multiplication which may be 
employed by those who have not mastered the traditional algorithm. 

3. LUCAS-EGYPTIAN METHOD 

Another sequence which proves fruitful in using our algorithm is the 
Lucas sequence. The Lucas sequence is composed of the numbers 

(1, 3, 4, 7, 11, 18, 29, 47, •••) 

and can be used effectively for the base sequence in an Egyptian multiplica-
tion problem. However, there is one acute difficulty in the consideration of 
this sequence for our algorithm; it does not have any representation for the 
positive integer 2. Therefore, something must be done to the sequence be-
fore we can apply it to our algorithm, since without a representation for the 
number 2 it is not complete. 

The author chose to augment the sequence in the following way and de-
fine his Augmejite^lJ-^^ A = L - , where At = 2, A2 = 15 

A3 = 3, and so on. 
The reader will observe that this augmented sequence has a represen-

tation for 2 and also observe the recursion relation for the Lucas Sequence, 
namely A = A +A -. Hence, we may use it for our base sequence in 
the Egyptian algorithm. The problem 18 x 54 may be set up in the follow-
ing fashion. 
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The augmented Lucas sequence i s complete and may be proved to be in a 

s i m i l a r fashion to T h e o r e m 2 , by use of L e m m a 3 , which s t a t e s 

L e m m a 3. 

L0 + L i + L2 + L3 + - • • + L n = L n + 2 - 1. 

Proof. Using an inductive proof, we have as our bas i s 

P ( l ) : L0 + L j = L3 - 1 

which i s t r u e , s ince 2 + 1 = 4 - 1 . Our inductive assumpt ion is 

P(K) : L0 + Lj + L2 + L3 + ' ' ' + L k = L k + 2 - 1 . 

We m u s t then prove that 

P(K + 1) : L0 + Li + L2 + L3 + • • • + L k + 1 = L k + 3 - 1 

i s t r u e . This may be accompl ished by adding a L k + 1 to both s ides of P(K). 

Hence , we have that 

L0 + L i + L2 + • • • + L k + L k + 1 - L k + 2 + L k + 1 - 1, 

which l eads us to the fact that 

L0 + L i + L2 + L3 + L4 + • • • + L k + 1 = L k + 3 - 1 
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Hence, our induction transition is complete. 
Invoking this lemma, we may prove the following theorem. 
Theorem 4. The augmented Lucas sequence is complete. 
Proof. As our inductive basis, we have that 

1 = Lt 

2 = L0 

3 = L2 

4 = L3 

5 = L3 + Lj , etc. 

As our inductive assumption, we assume that for N, a positive integer, 
there are representations for N in terms of Lucas numbers so that 

1 < N < L n + 2 " 1 • 

Hence, we must prove that for M, a positive integer, M is representable 
as a sum of Lucas numbers between the intervals of 

L I 0 - 1 < M < L J _ Q - 1 . 
n+2 n+3 

Using the same idea as described in the previously proven theorems, we 
shall subtract an L „ from the above inequality. Hence, we have that 

- K M - L n + 2 < L n + 3 - L n + 2 - 1 . 

Let Q = M - Ln + 2 - Therefore, 

-1 < Q < L n + 3 - L n + 2 - 1. 

This leads us to the conclusion that 

-1 < Q < L n + 1 - 1 . 
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We may conclude that Q is representable as a sum of augmented Lucas num-
bers. And from this, we can conclude that M is representable as a sum of 
augmented Lucas numbers, since M = Q + L ? . 

Other sequences may be investigated and tested for completeness; how-
ever, no others with starting values other than (1,1), (1,2), and (2,1) will 
be found which satisfy the generalized Fibonacci recursion relation. In gen-
eral , other sequences that are complete will follow the following generalized 
recursion relation 

n-1 
Gn = E Gq J = ( 2 , 3 , 4 , . . . ) , 

q=n-j 

and where the starting values for the above sequences are taken from either 
the augmented Lucas sequence or the deleted F sequence. For example, 
let us examine the Tribonacci sequence, where three numbers are added. 
The generalized recursion relation would look like the following: 

n-1 
G = y G . 

n Z—i q 
q=n-3 

Hence, the sequence would be 

(1, 2, 3, 6, 11, 20, •••) . 

In general j determines the number of terms to be added together and also 
the number of starting values to betaken from either the deleted F sequence 
or the augmented Lucas sequence. 

The author at this point feels that it would be valuable for the reader to 
have a simple method for determining whether a sequence is or is not com-
plete. It was observed and proven by John L. Brown, J r . [2] that the neces-
sary and sufficient conditions for a sequence to be complete is that the 
sequence satisfy the following general summation formula 
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n 
A n + 1 * 1 + E Ai 

i=l 

where Aj = 1. Hence, we now have a convenient way in which to determine 
a sequence complete. 

The material submitted in this paper is not completely theoretical and 
does have very definite practical application. The author used both the de-
leted F sequence and the augmented Lucas sequence in conjunction with the 
Egyptian method in a class of "slow learners. M The results were phenomenal. 
Those students who could not multiply by traditional means were then given 
a method even they could handle. You see, all one needs to be proficient in 
the methods given above is an adequate understanding of simple addition. 
The author found that most slow learners could add correctly, however, they 
could not multiply. Therefore, this algorithm best fit the needs of those 
students. 

The concepts mentioned throughout the paper may also be used in ad-
vanced mathematics classes. Hence, as one can see, the utility of these 
topics and their applications is boundless. 

It is the author's intent that the reader search for other complete se -
quences and establish those concepts revealed in this paper, so that he may 
transfer the concepts to others and hence, give many an algorithm for mul-
tiplication which they may not already have. 

The author would also like the reader to be aware of the fact that it is 
sometimes advantageous to use one complete sequence over another. For 
example, it is better to use the Lucas sequence when multiplying the numbers 
18 x 432, than it is to use the Fibonacci sequence or the powers of two se-
quence, since 18 is an element of the Lucas sequence. Therefore, this was 
the primary reason the author went in search of other complete sequences. 

The author hopes that the methods for multiplication developed in this 
paper will be tried, and hopes that the success of those using them will be as 
rich as his own. 

[Continued on page 194. J 


