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INTRODUCTION 

" . . . , Gauss made the remarkable discovery that those, and only 
those, regular polygons having a prime number of sides p can be con-
structed with straight edge and compasses if and only if p is of the 
form 22 + 1. Now the ancient Greeks had found how to construct with 
straight edge and compasses regular polygons of 3, 4, 5, 6, 8, 10 and 
15 sides. If in the formula p = 22 + 1 we set n = 0 and 1, we ob-
tain the primes 3 and 5 respectively — cases already known to the 
Greeks. For n = 2, we find p = 17, which is a prime number. 
Therefore Gauss showed that a regular polygon 6f 17 sides is con-
struct ive with straight edge and compasses, which was unknown to the 
Greeks. Gauss was vastly proud of this discovery, and he said that it 
induced him to choose mathematics instead of philology as his life workT.T 2 

This quote from Howard W. Eves! recent two-volume set, In Mathe-
matical Circles, suggests that the construction of regular polygons having a 
prime number of sides is not easy, even when possible, with a straight edge 
and compass. Note that Gauss showed it is impossible to construct with a 
ruler and compass the regular seven-sided polygon. Furthermore, one 
method for showing that a general angle 6 cannot be trisected with Euclid-
ean tools involves showing that it is impossible to trisect the angle whose 

*Text and illustrations copyright 1971 by Jean J. Pedersen. 
2HowardW. Eves, In Mathematical Circles, Quadrants UI and IV, Prindle, 

Weber and Schmidt, Inc., Boston, 1969, p. 113. 
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measure is 7r/3 — hence, the nine-sided regular polygon is not constructible 
with a ruler and compass either. * 

The first part of this article deals with a way to approximate, by fold-
ing a paper strip, any regular polygon whose number of sides is of the form 
2 ± 1 , for some natural number n. Note that when n = 3, the expression 
2 n ± 1 yields 7 and 9. 

A modification of the iterative folding sequences used on paper strips 
is presented. It suggests a method for approximating an angle having meas-
ure 6/(2 + 1), where n is any natural number and 0 is any given angle 
whose measure is between 0 and TV Particularly interesting is the case 
when n = 1, which produces a trisection approximation process. 

Finally, as an illustration, instructions are given describing how paper 
strips may be used to construct models of regular convex dodecahedra. The 
constructions suggest, as will be seen, that a "parallel strip" classification 
of certain polyhedra might provide an interesting point of view from which to 
study their properties. 

FOLDING SEQUENCES INVOLVING ONE ITERATIVE EQUATION 

As an elementary example, take a roll of ordinary adding machine tape 
and make a fold on any straight line, t0, near the end of the tape so that 
t0 crosses one of the parallel edges of the tape at a point, A0. Fold again 
through A0 to bisect one of the angles formed by t0 and an edge of the tape. 
Do this so that the newly created transversal, tA, goes towards the roll of 
paper. One endpoint of tj is A0, the other endpoint is named MAj. M Now 
fold the tape through A1;> bisecting the obtuse angle created by tj and the 
edge of the tape. This fold yields yet another transversal, 1 ,̂ whose end-
points are Aj, A2. To continue this folding process always bisect, by fold-
ing through A , the obtuse angle, having sides t and an edge of the tape; 
thereby obtaining a new transversal, t - , having endpoints A , A - (for 
n = 1, 2, 3, • • • ) . The acute angle formed by t and an edge of the tape is 
denoted x ... n-1 

*Howard W. Eves, An Introduction to the History of Mathematics, Rinehart 
and Company, Inc. , New York, 1953, pp. 96-98, p. 107. 
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For the most accurate results , both in this case and all other examples 
which follow, fold the tape so that whenever transversals are formed, the tape 
remains folded on these creases and the next fold always occurs on the por-
tion of the paper strip which comes from the top of the existing configuration. 
Thus, the triangles which are formed will either stack up or form a zig-zag 
type pattern in the folding plane, but the configuration formed will never need 
to be turned over during the folding process. One quickly discovers, how-
ever, that certain rotations of the configuration in the folding plane facilitates 
the folding process. Figure 1 illustrates one case of how the unfolded tape 
appears after the folding process has taken place. 

When the above folding process is accurately carried out, an accordian-
like stack of triangles results. And, it soon becomes visually apparent that 
successive triangles are getting more and more alike — consequently, the 
measure of x must approach TT/S as n gets large. 

For skeptics, the proof can be ascertained. Firs t , note that since the 
edges of the tape are parallel, the measures of successive acute angles al-
ways satisfy the equation 

2 x n + V l = « ' 

where n = 1, 2, 3, • • • . Successive computations of x1? x2, x3, e t c . , 
yields 

x n = | [ 1 + (-1/2)1 + ( _ l / 2 ) 2 + . . . + ( - i^) 1 1 " 1 ] + ( - l /2 ) n x 0 , 

which can be verified by mathematical induction. Then, using the formula 
for the sum of a geometric sequence, it follows that 

xft = I [1 - (-l /2)n] + ( - l /2) n x0 . 

Consequently, 

lim x = 7T/3 . n—*°° n 
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Notice that the difference, in radians, between x (which is formed 
nH n 

by the (n + 2) u fold of the tape) and ir/3 is 

( - l / 2 ) n [x 0 - 7T/3] . 

This means each new accurate fold on the tape produces an angle whose 
measure is twice as close to 7r/3 as its predecessor. In fact, the maximum 
value for the actual e r ro r (which occurs when x0 approaches zero) indicates 
that one can always expect an approximation of tr/3 with accuracy better than 
one minute after 14 folds. But, as one is not likely to choose x0 close to 
zero, this degree of accuracy will occur, in most cases, when n < 14. 

It turns out to be practical, in the paper tape construction of models, 
to have the following: 

Visual Criterion. When the consecutive longest transversals formed 
on a tape by an iterative folding process, appear to be of the same length, 
then the tape is called usable. 

Suppose the length of successive transversals obtained from some i ter-
ative folding process approaches some fixed value, in the limit sense. Then 
there must exist some number k f 0 such that consecutive acute angles 
formed by those transversals and an edge of the tape converge to an angle 
having measure 7r/k. 

Definition. On a usable tape, whose successive smallest acute angles 
converge to 77/k; when the portion not satisfying the Visual Criterion is cut 
off, the remaining tape is denoted nT(7r/k).n 

Accordingly, the usable tape produced in the above example is denoted 
?rT(7r/3)Tf and called a Mpi thirds tape. n 

The method of obtaining T(ir/k) implies that there will always be some 
natural number, p , such that the transversals t , where n < p, will not 
appear on that tape. But, it is not necessary to identify p. Thus, in describ-
ing constructions, reference to a transversal tn on T(7r/k) will mean any 
transversal on T(7f/k). However, once t has been identified for use in a 
particular construction, then t + (where q is any natural number) will 

th mean the q transversal following t . 



204 RECREATIONAL MATHEMATICS [Apr. 

Since T(7r/3) contains approximations of equilateral triangles, it may 
be used to construct models of hexagons and deltahedra. As an example, cut 
T(7r/3) on t and t + 1A> then fold the ten triangle strip on t „ and t fi. 
Now, because straight lines are easier to fold than to cut, the t 1 0 end of 
the tape is wrapped around t when the tape is folded on t q to complete 
the model of a hexagon. Note that the definitive edges do not include either 
of the cut edges t , t l i r k . & n n+10 

The above folding process generalizes in the following way. 
Theorem 1. If 
(1) n is some fixed natural number. 
(2) A paper tape of width w is folded on some transversal, t0, which 

crosses one of the parallel edges of the tape at A0. 
(3) One angle formed by t0 and an edge of the tape is then divided into 

2 par ts , by folding through A0; creating, in order, the new set 
of transversals , t l s t2, t3, • • • , t , where tj < t2 < t3 < • • • < t . 
The measure of the acute angle formed by t and the edge of the 
tape is denoted x0. The endpoint of t which lies on the opposite 
edge of the tape from A0 is called AA. 

(4) In general, folds are made so as to divide into 2 parts the obtuse 
angle having vertex A, and an interior with no transversals. The 
new transversals , t k n + 1 > t ^ , • • • , t k n + n > are such that t ^ 
< W 2 < ••• K W The endpoint of t ^ , called Afc+1, lies 
on the opposite edge of the tape from A, (for k = 1, 2, 3, • • • ) . 
The measure of the acute angle formed between t and an edge 
of the tape is denoted x, . 

Then , lim x, = 7r/(2n + 1) and consequently, this folding pro-
cess produces T(7r/(2n + 1)). 

Proof. From the description of the folding process, it follows that the 
measures of successive acute angles satisfy the equation 

(1) 2 n x k + x ^ = 7T , 

where k = 1, 2, 3, • " . Then, using mathematical induction, it can be 
shown that 
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x, k 2 n + 1 
[1 - ( - l /2 n ) k ] + ( - l /2 n ) k x 0 , 

for k = 1, 2, 3, • • • . But, since | - l / 2 n | < 1, it follows immediately that 

, lim x = 7r/(2n + 1) . 
K -—• CO 

The theorem is surprisingly fruitful. For example, Figure 2(a) illus-
trates how the folded tape appears just after the folding process has taken 
place with n = 2. Figure 2(b) shows how this same tape appears when it is 
unfolded. This folding process produces the usable tape, T(7r/5). If T(7r/5) 
is cut on t 2 n and t 2 n + 6 , and folded on t ^ , t 2 n + 3 , t 2 n + 5 , a model of the 
regular pentagon shown in Figure 2(c) is formed. The sides of this pentagon 
approximate w/sin (27r/5). But, a regular pentagon whose sides approximate 
w/sin (TT/5) may also be formed from T(7r/5). TO see this, cut T(7f/5) on 
t0 ,- and t0 1Q; then fold in a winding fashion on the transversals t0 , 0 , 
t2n+4' W e ' Sn+S' W o * Sn+12 • T h e r e s u l t ' a m o d e l o f a r e § u l a r P e n " 
tagon with a pentagonal hole in the center, is shown in Figure 2(d). 

As another example, consider the results of the theorem when n = 3. 
Figure 3(a) shows how the beginning of the tape which produces T(7T/9) might 
appear. Once T(7r/9) has been obtained, it may be used to construct models 
of regular 9-gons whose sides approximate either w/sin (ir/9), w/sin (27T/9), 
or w/sin (4ir/9). This is done by folding T(7T/9) on consecutive transversals 
whose labels are equal to 0 (mod 3), 2 (mod 3), and 1 (mod 3), respectively. 
Figure 3(b) illustrates the regular 9-gon which is formed by folding on t« - , 
t« 4 , to ,7> • • • j to joo'* and whose sides approximate w/sin (47T/9). 

In general, T(7r/(2n + 1)) will produce models of n non-congruent 
regular (2 + l)-gons whose sides approximate w/sin (2 7r/(2 +1)), k = 1, 
2, ••• , (n - 1). The actual construction involves folding T(7r/(2 + 1)) on 
successive transversals whose labels are equal to 0 (mod n), (n- 1) (mod n), 
(n - 2) (mod n), • • • , 1 (mod n), respectively. 

A BONUS 

Suppose the folding process described in the theorem takes place on a 
piece of paper whose straight edges are not parallel* Thus, suppose angle 
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ABC, having measure 0 (between 0 and IT), and supplementary angle A BD, 
occur so that DBC lies on the edge of a pieaa of paper. Then the paper is 
cut along the line AB (see Figure 4). A point, A0, is selected between D 
and B and the paper is folded, through A0 on some line, t0, which is not 
parallel to AB. The transversals t (where k = 1, 2, •••) are formed by 
folding so that tA bisects the angle formed by to and A0B, determining a 
point, Aj, on the line containing AB. And, in general, t, bisects the 
angle A. 2A. -B , determining a point A, on the line containing A, ~B 
(when k >. 2). The measure of the angle A ^ Q B is denoted x0 and half the 
measure of angle A, nA B is denoted x. - for k > 2. & k-2 k_i k-1 

Then, since the sum of the measures of the interior angles in any t r i -
angle is always equal to 1T it follows that 

2 x k + X k _ 1 + (7T - 0) = 7T , 

when k = 1, 2, 3, • • •. Thus, 

(2) 2xk + xk_x = 6 , 

when k = 1, 2, 3, • • • . 
But this is similar to Equation 1, where n = 1* In fact, a review of 

the proof for Theorem 1 reveals that it would not have been any more difficult 
if Tt77Tf were replaced with M6M and that Equation 2 would lead to the result 

. lim x. = e/3 . 

Thus the method illustrated in Figure 4 really represents a trisection 
approximation method for angles whose measure is between 0 and 77. A s a 
practical matter it is not, in this case, possible to fold accurately indefinite-
ly, as was the case with parallel lines. Nevertheless, the method is effective 
— especially when judicious choices of A0 and to are made — i. e. , choose 
A0 as far away from B as the paper will allow and make a visual guess 
when folding to so that when x0 is formed, it will be as close to 0/3 as 
possible. 
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Figure 4 
OTHER FOLDING SEQUENCES 

The folding sequences considered thus far have involved just one i tera-
tive equation. But, as the next theorem shows, other folding sequences do 
exist. 

Theorem 2. If 
(1) n is some fixed natural number greater than 1. 
(2) A paper tape, of width w, is folded on a transversal, t0, which 

crosses an edge of the tape at some point, A0. 
(3) The angle formed by t0 and the edge of the tape having vertex A0 

is divided, by folding, into 2 parts producing transversals tl9 

* 
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k > 3̂ 9 ''' » t so that ti < t2 < t3 < - • • < t ; and t has end-
points A0, A4. The measure of the acute angle which t n makes 
with the edge of the tape is denoted x0. 

(4) The obtuse angle at A j is bisected, creating a new transversal 
t -. It has endpoints Al5A2 and forms an acute angle with an 
edge of the tape, denoted xt. 

(5) In general, either (i) the obtuse angle at A, is divided into 2 
par ts , when k is even, so that each new transversal is longer than 
its predecessor and the last transversal folded creates the point 
A, - on the opposite edge of the tape from A, ; or (ii) the obtuse 
angle at A, is bisected, when k is odd. In either case, the 
measure of the acute angle between the transversal joining A, , 
A, - and an edge of the tape is denoted x, . 

Then , lim x91 = 7r/(2 - 1) and„ consequently, the folding 
sequence produces T(7r/(2 - 1)). 

Proof. By the description of the folding process, it follows that the 
measures of consecutive acute angles satisfy 

,„v 2 x 2 k - l + X 2 k - 2 = «\ 
„n A J for k = 1, 2, 3, 
2 x2k + x 2 k - l = * ) 

Solving for x2. - in the first iterative equation, then for x^. In the second 
yields 

X2k = ( 7 r + X 2 k - 2 ) / 2 n + 1 ' 

It can then be shown, by mathematical induction, that 

x, 2k nn+l 

for k = 1, 2, 3, • • - . Thus 

[1 - ( l / 2 u " r ± r ] + U / 2 n ^ ) x0 , 

lim x9. = 7r/(2n+1 - 1) 
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In general, if T(ir/(2n - 1)) is folded on all t .,, t. 9 , where k = 
n+1 0 (mod (n + 1)), a regular (2 - l)-gon will be formed. 

As an example, suppose n = 2 in Theorem 2. Figure 5(a) illustrates 
how the beginning of this tape, which produces T(7r/7), might appear. 

If T(7r/7) is folded, in a winding fashion, on all t, - , t, 9, where 
k = 0 (mod 3), the model formed is a regular seven-sided polygon (Figure 
5(b)), whose sides approximate w/sin (ir/7). 

Likewise, if T(TT/7) is folded on all t. where k f 1 (mod 3), the r e -
sult is a seven-sided polygon whose sides approximate w/sin (BTr/7). If this 
is done so that the folds on t , when k = 0 (mod 3), wrap the tape around 
the polygon being formed; then the result appears as shown in Figure 5(c). 

Note, however, that as illustrated in Figure 5(d), if T(7r/7) is folded 
on all t where k f 2 (mod 3), a regular seven-sided star polygon is 
formed whose sides approximate w/sin (7r/7). It can be shown that the short-
est distance between consecutive vertices approximates w/sin (27r/7). 

CONSTRUCTING DODECAHEDRA WITH T(fl/5) 

When cash register tape (which is more porous than adding machine 
tape) is used with white glue, surprisingly sturdy models of polyhedra may 
be made. 

To construct a dodecahedron, for example, fold the cash register tape 
to obtain T(7r/5) containing at least 90 usable triangles. Cut T(7r/5) on 
t9 and tQ _fi, then fold the resulting strip, glueing the overlapping por-
tions in position as shown in Figure 6. Label the edges of the pentagons as 
shown. The polyhedron is completed by .first forming a ring-like figure and 
glueing one of the shaded parallelograms on top of the other. Then join the 
remaining 18 pairs of edges so that edges labeled with like numbers cor res -
pond with each other. Tabs for joining the edges may be conveniently obtain-
ed by cutting on nineteen successive long transversals of T(7r/5). 

If the tabs are labeled so that when they are glued in place it preserves 
the numbers shown on each of the edges, it is then possible, upon completion 
of the dodecahedron, to observe that 

The dodecahedron, formed from T(TT/5) of width w, and whose edge 
approximates w/sin (27T/5) may be constructed with no fewer than six 
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bands, each of which contains 12 consecutive triangles from T(7r/5). 
(In practice, an extra triangle would be required on some bands — but, 
since it serves only as a tab, it is not counted.) 
To see that this is t rue, take a strip of T(TT/5) which contains 12 t r i -

angles and observe that it is possible to position it on the completed dodeca-
hedron so that its short transversals all coincide with edges whose label in-
cludes the symbol Ml. , T But, it may also be positioned in five other ways so 
that its short transversals coincide with the edges each of whose labels in-
clude the symbols"2," "3,M M4,M " 5 , " and f f6 , n respectively. Because the 
label on every edge contains at least one number, six bands are sufficient for 
this particular construction of ihe dodecahedron. Note that if any one num-
ber were removed from the labels on this dodecahedron, there would be some 
edges with no label. Therefore, at least six bands are necessary for the 
construction of this dodecahedron. 

This model may be used to show that if a dodecahedron were constructed 
from six bands, each containing 12 consecutive triangles from T(TT/5), there 
would be six edges crossed by exactly two bands and those edges would be 
oriented so that (a) their midpoints are the vertices of an inscribed octa-
hedron; (b) the collection of pentagonal diagonals parallel to those six edges 
form the edges of an inscribed cube; and, since alternative vertices of a cube 
define vertices of a tetrahedron, (c) the vertices of two distinct inscribed 
tetrahedra may be identified on this model. 

A second, somewhat different, dodecahedron may be constructed using 
T(7r/5). This model is particularly easy to make from gummed tape. Cash 
register tape and white glue produce a better looking model but, having one 
side gummed makes the description of the construction easier. Accordingly, 
the following instructions are given for gummed tape. 

F i rs t , cut from T(fl/5) six strips of 22 triangles each. The first por-
tion of a typical strip is shown, with the gummed side down, in Figure 7. 
Label the ungummed side of each of the strips by replacing the letter "X" 
shown in Figure 7 with the letters "A," M B," ! fC," "D ," " E , " " F , " on the 
first, second, third, fourth, fifth, and sixth str ips, respectively. As an 
example, the first strip, called "strip A," will have i*« p-leven long transver-
sals labeled "Aj , " "A2," • • • 9 "An," consecutively, and all transversals will 
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be labeled with an a r r o w which points to the endpoint of the next long t r a n s -

v e r s a l . 

The following notational device i s convenient: If X, Y, Z r e p r e s e n t 

m e m b e r s of fA, B , C , D , E , F } and if m , n , k a r e na tura l n u m b e r s , 

then TTX —**Y M means that: the gummed s ide of s t r i p X i s glued onto the 

ungummed side of s t r i p Y so that the t r a n s -

v e r s a l m a r k e d fT—X —• " coincides with the 

t r a n s v e r s a l ma rked M—Y —• " and the a r -
n 

rows point in the s a m e di rec t ion . 
lfX **~*-Y M means that: the gummed side of s t r i p X i s glued onto 

the ungummed side of s t r i p Y so that the 

t r a n s v e r s a l m a r k e d M—X - V r coincides 
m 

with the t r a n s v e r s a l m a r k e d n— Y —-• " and 
n 

the a r r o w s point in opposite d i rec t ions . 

" X m - * . Y n - - > Z k " m e a n s that: X m — Y n and Y n - + Z k . 

Using this notational dev ice , the dodecahedron i s a s sembled a s follows: 

E7 

Dr 

CT 

Br 

- » A e 

- E 6 

-^Dg 

- c 8 

II. A 5 *-* D8 

B5<-- E 8 

C 5 w A8 

D5 ~ B8 

A7 —>Bg E 5 * - » C 8 

III. The F s t r i p m a y now be woven in and out so that 

D 9 - > F 2 

F 3 - > B 4 

E 9 — F 4 

F 5 - C 4 

A9 - » F 6 

F 7 -»D 4 

B9 —»F8 

Fg - » E 4 

C 9 - * F 1 0 
F 1 I - ^ F 1 ^ A 4 
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IV. A3<~+ C10 V. An -> A4 - > E 2 

B3 <->D10 B i i - * Bi - * A 2 

C3 «—»E10 On — Ci - - B 2 

D3 <-> A10 Du —>Dj — C2 

E3 «—* B10 E1A —* Et —• D2 

This dodecahedron is also formed from exactly six bands, but each 
band contains 20 triangles (not counting the overlapping tabs) from T(TT/5). 

Comparing the two completed polyhedra, one will note many similarities and 
differences. The first and most obvious difference is that the one has some 
holes in it and that i tappears to be "woven together." A most effective model 
of the second dodecahedron may be made if six different colored strips are 
used in its construction. In fact, it is not even necessary to use glue, for 
one can hold the various strips together as indicated by the instructions, 
with 30 paper clips. Then, when the dodecahedron is finished, all of the 
paper clips, except those six which hold three thicknesses of tape together, 
may be removed. 

If the places where bands overlap themselves are discounted, all of the 
edges of the second dodecahedron are crossed by exactly two bands. If one 
imagines the arrows on this dodecahedron to be roads on which travel is per-
mitted only in the direction of the arrows, it can be seen that, if one leaves 
the pentagonal cycle Ai iBi iCuDi iEu , all roads lead to the cycle 

D9F3E9F5A9F7B9F9C9F1 1 

and, leaving that cycle, all roads lead to the cycle A7B7C7D7E7, from which 
there is no escape. 

Many other polyhedra may be constructed with paper strips. If the 
reader wishes to try devising some paper tape constructions for other poly-
hedra, the following references may be useful. 
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[Continued from page 135. ] 
SPECIAL ADVANCED PROBLEM 

H-182S Proposed by Paul Erdos, University of Colorado, Boulder, Colorado. 
Prove that there is a sequence of integers nj < n2 < • • • satisfying 

o-(nk) or(cr(nk)) 
——^00 a n d T — r - — • * - l , 

\ a ( \ ) 

where 

w = d l d 

(the sum of the integer divisors of n.) 
[From Conference on NUMBER THEORY, March 24-27, Washington State 

University, Pullman, Washington. ] 


