KAPREKAR'S ROUTINE WITH TWO-DIGIT INTEGERS
 CHARLES W. TRIGG
 San Diego, California

Kaprekar's routine consists of rearranging the digits (not all alike) of an integer, N_{0}, to form the largest and the smallest possible integers, finding their difference, N_{1}, and repeating the operation on N_{1} and on the subsequent differences until a terminal situation is reached. He found [1] that when the routine is applied to any four-digit (not all alike) integer in the decimal system, the self-producing 6174 is eventually reached. The routine has been expanded to other number bases [2], [3], and to three-digit [4] and five-digit [5] integers.

When applied to two-digit integers, an integer and its reverse are involved, the smaller being subtracted from the larger in each step of the routine. In the system with base r, all differences are multiples of $r-1$. Each step may be called a reversal-subtraction-operation (RSO).

There are three possible terminal situations which may result when the routine is applied to a two-digit integer, namely:
A. If at any step of the repetitious routine, an integer with two like digits is produced, its N_{1} will be 00 .
B. A self-producing integer is formed. That is, the integer is reproduced when subjected to an RSO. For example: 37 in the scale of eleven, where $73-37=37$.
C. A regenerative loop is formed, in which an RSt on one member produces the next member. For example: in the scale of nine, $53-35=17,71-17=53$, and so on.
In each of these categories, if all two-digit integers in a particular system lead to the same result, it is said to be unanimous.

The two-digit ordered integers $a b$ and $\overline{a+k} \overline{b+k}$ have the same N_{1}. Hence, to investigate the entire field in the scale of r, it will be sufficient to examine only the $\mathrm{r}-1$ integers with the form $\overline{\mathrm{r}-1} \mathrm{~b}$, where $\mathrm{b}<\mathrm{r}-1$. Each of these is the representative (rep) of all two-digit integers from which an RSO produces the same N_{1}. Any two-digit integer can be converted into its rep by addition of an appropriate multiple of 11 . Thus, $52+44=96$ in
the decimal system, so $52-25=27=96-69$. All integers with the same rep have the same value of $a-b$.

THE EXAMINATION PROCEDURE

An RSO is performed on each of the reps. Each difference, N_{1}, is converted into its own rep. These results are assembled into flow charts such as those given below. All $\mathrm{N}_{1}{ }^{\prime} \mathrm{s}$ with the same rep are placed below a common subtraction line. Their common rep is placed below them on the left. The category letter of each terminal situation is placed below it.

Thus, only $r-1$ RSO's are necessary to examine the entire field in the base r. The number of steps necessary to convert any integer into the terminal result can be read directly from the chart after locating its rep. In the scale of five, three RSO's convert 12 (which has the rep 43) into the selfproducing 13.

In the charts for bases eleven and twelve, the symbols X and E stand for the digits ten and eleven, respectively.

OPERATIONAL FLOW CHARTS

Base Two	Base Three	Base	Four	Base	Five
10	21	30	31	43	41
01	12	03	13	34	14
01	02	Γ^{21}	12	04	22
B					A
	20	32		40	
	$\underline{02}$	$\underline{23}$		04	
	11	$\underline{03}$		31	
	A	C			
				42	
				$\underline{24}$	
				13	
				B	

Base Six			Base Seven			Base Eight			
50	53		65	63	61	70	75		71
05	35		56	36	16	07	57		17
${ }^{41}$	14		06	24	42	${ }^{61}$	16		52
52		51	60	64		72		73	74
$\underline{25}$		15	06	46		27		37	47
23		32	51	15		43		34	25
54			62			76			
45			$\underline{26}$			67			
L05			33			-07			
C			A			C			

Base Nine				Base Ten		
85	81		83	90	97	
58	18		$\underline{38}$	09	79	
26	62		44	-81	18	
			A			
84		87		92		95
$\underline{48}$		78		29		59
35		08		63		36
86		80		96	91	
68		08		69	19	
-17		71		27	72	
82				94		93
$\underline{28}$				49		39
-53				45		54
C						
				98		
				$\underline{89}$		
				L_{09}		
				C		

1971] KAPREKAR'S ROUTINE WITH TWO-DIGIT INTEGERS

SUMMARY AND GENERALIZATIONS

1. Every system with an odd base has a sequence leading to 00 , since

$$
\overline{r-1} \overline{(r-3) / 2}-\overline{(r-3) / 2} \overline{r-1}=\overline{(r-1) / 2} \overline{(r-1) / 2}
$$

In bases three and seven, 00 is unanimous.
2. If a self-producing integer, $k x$ with $k<x$, exists in a system with base r, then

$$
(r x+k)-(r k+x)=r k+x
$$

whereupon

$$
\mathrm{r}=(2 \mathrm{x}-\mathrm{k}) /(\mathrm{x}-2 \mathrm{k})=2+3 \mathrm{k} /(\mathrm{x}-2 \mathrm{k})
$$

Then, since $\mathrm{x}<\mathrm{r}$, self-producing integers, which will have the form $\mathrm{k} \overline{2 \mathrm{k}+1}$, exist in and only in systems with bases of the form $3 \mathrm{k}+2$.

Such bases are two (in which 01 is unanimous), five, eight, and eleven.
3. Both $\overline{\mathrm{r}-1} \mathrm{c}$ and $\overline{\mathrm{r}-1} \overline{\mathrm{r}-3-\mathrm{c}}$ have $\mathrm{N}_{1}{ }^{\prime} \mathrm{s}$ which are the reverse of each other, since

$$
\overline{r-1} c-c \overline{r-1}=\overline{r-2-c} \overline{c+1}
$$

and

$$
\overline{\mathrm{r}-1} \overline{\mathrm{r}-3-\mathrm{c}}-\overline{\mathrm{r}-3-\mathrm{c}} \overline{\mathrm{r}-1}=\overline{\mathrm{c}+1} \overline{\mathrm{r}-2-\mathrm{c}} .
$$

Hence, the $N_{1}{ }^{\prime} s$ have the same rep.
4. If r is even and not of the form $3 \mathrm{k}+2$, the result of application of RSO's to the reps in that system is a unanimous regenerative loop of $\mathrm{r} / 2$ elements.

REFERENCES

1. D. R. Kaprekar, "An Interesting Property of the Number 6174," Scripta Mathematica, 21 (December, 1965), p. 304.
2. J. H. Jordan, "Self-Producing Sequences of Digits," American Mathematical Monthly, 71 (January, 1964), pp. 61-64.
3. Charles W. Trigg, "Predictive Indices for Kaprekar's Routine," Journal of Recreational Mathematics, scheduled for publication in October, 1970.
4. Charles W. Trigg, "All Integers Lead to . . ," submitted to The Arithmetic Teacher.
5. Charles W. Trigg, "Kaprekar's Routine with Five-Digit Integers," submitted to Mathematics Magazine.

