$$
r_{A B}=r+\frac{r \cdot r_{n}}{r+r_{n}}
$$

Since the network is infinite, we can disregard the addition of one section of each sequence. This allows to determine the resistance between points A and B as equal to the resistance between C and D .

Consequently,

$$
r_{n}=r+\frac{r \cdot r_{n}}{r+r_{n}}
$$

After solving this equation, we have .

$$
r_{n}=r \cdot \frac{1+\sqrt{5}}{2}=r \cdot \phi
$$

where ϕ is the Golden Ratio.
See also, S. L. Basin, "The Fibonacci Sequence as it Appears in Nature," Fibonacci Quarterly, Vol. 1, No. 1, p. 53.

[Continued from page 187.]
Editorial Note: The question remains how the students are to find the Fibonacci or Lucas representation for the first factor. To find the Fibonacci representation for 28 , we subtract the largest Fibonacci number not exceeding 28, namely 21. This leaves $28-21=7$; so our next choice is $5 ; 28-21-5$ $=2$, a Fibonacci number. Thus, $28=21+5+2$. This will always yield the representation with the least number of summands.

REFERENCES

1. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin Company, Boston (1969), pp. 69-72.
2. John L. Brown, Jr., "Note on Complete Sequence of Integers," American Mathematical Monthly, Vol. 67 (1960), pp. 557-560.
