$$
s_{2 n-1}=\left(S_{n}-S_{n-1}\right) T_{2 n-1}^{\frac{1}{2}}
$$

$$
\begin{equation*}
N_{n}-N_{n-1}=\left(S_{n}-S_{n-1}\right)\left(S_{n}+S_{n-1}\right) \tag{17}
\end{equation*}
$$

By the use of the recursive formulas, the tabulation was extrapolated for negative index numbers. It was found to be perfectly reflexive about 0 except that the values of S became negative for negative index numbers, while the values of N and T remained positive. All generalized formulas and recursive formulas and relations held for the reflected series.
[Continued from page 195.]

Solution by Using the Fibonacci Terms
2
8
34
144
610
2584
10946
46368
196418
832040
......
3389......
$3 \times 3389 \cdots=1016949 \cdots$.

