ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER

C. C. CADOGAN

University of Waterloo, Waterloo, Ontario, Canada

1. INTRODUCTION

The following problem is discussed. Let

$$
\mathrm{V}_{1}=(\mathrm{n}, \underbrace{0, \cdots}_{\mathrm{n}-1}, 0),
$$

where n is a finite positive integer. From V_{1} are generated

$$
V_{i+1}=(n-i, i, \underbrace{0, \cdots}_{n-2}, 0), \quad 1 \leq i<n
$$

From V_{2} are generated

$$
V_{n+j}=(n-1-j, 1, j, \underbrace{0, \cdots}_{n-3}, 0), \quad 1 \leq j<n-1
$$

and so on, until the entire list of non-null vectors V_{i} has been considered.
Suppose the first $\mathrm{k}(0 \leq \mathrm{k} \leq \mathrm{n})$ components from left to right in each vector V_{i} are fixed, with $k=0$ meaning that none is fixed, and the remaining components are arranged from left to right in descending order of magnitude. The positive integers in each vector V_{i} form a partition of n and on arranging the components as above, we obtain what we define as partly ordered partitions of the integer n.

Let $\phi_{k}(n)$ denote the number of distinct non-null vectors V_{i} in the system generated above in which the first k components arekept fixed. The primary object of this paper is to derive a recurrence relation for $\phi_{k}(n)$. Several other interesting results are obtained.

2. IMMEDIATE RESULTS

Let $p(n)$ denote the number of distinct partitions of the positive integer n. Several values of $p(n)$ can be found in [1], page 35 .
*This paper was written while the author was on an N. R.C. postdoctoral fellowship at the University of Waterloo.

Let V_{i}^{\prime} be the vector obtained from $V_{i}(i=1,2, \cdots)$ by removing all zero components of V_{i} and let $[\mathrm{V}],\left[\mathrm{V}^{\mathbf{\prime}}\right]$ denote the set of non-null vectors V_{i}, V_{i}^{\prime}, respectively. There is a one-one correspondence between V_{i} and $\mathrm{V}_{\mathrm{i}}^{\prime}$ and hence between $[\mathrm{V}]$, [$\left.\mathrm{V}^{\prime}\right]$. We have,

Theorem 1. $\quad \phi_{0}(\mathrm{n})=\mathrm{p}(\mathrm{n})$.
Proof. The components of V_{i}^{\prime} constitute a partition of n. Suppose the components of each vector in [V^{\prime}] are arranged from left to right in descending order of magnitude. Then each $V_{j}^{\prime}(j \neq i)$ which has the same components as V_{i}^{\prime} after rearrangement, hence the distinct vectors in [V^{\prime}] are those vectors V_{i}^{\prime} whose components are distinct partitions of n, hence

$$
\phi_{0}(\mathrm{n})=\mathrm{p}(\mathrm{n}) .
$$

Theorem 2. $\phi_{k}(n)=2^{n-1}, \quad k=n \quad$ or $\quad n-1, \quad(n \geq 1)$.
Proof. We show first that $\phi_{n-1}(n)=\phi_{n}(n)$.

$$
\mathrm{V}_{\mathrm{i}}^{\prime}=(1, \underbrace{1, \cdots, 1)}_{\mathrm{n}}
$$

is the only vector in $\left[\mathrm{V}^{\prime}\right]$ which has more than $\mathrm{n}-1$ components, hence keeping $\mathrm{n}-1$ components fixed in [V^{\top}] is equivalent to keeping all n components fixed; that is,

$$
\phi_{\mathrm{n}-1}(\mathrm{n})=\phi_{\mathrm{n}}(\mathrm{n})
$$

Now the system [V^{\top}] contains all the compositions of the integer n, hence by a result of $[2$, page 124$], \phi_{n}(n)=2^{n-1}$.

This proves the theorem.
We come now to the more significant results.

3. MAIN RESULTS

Theorem 3. $\quad \phi_{\mathrm{k}}(\mathrm{n})=\phi_{\mathrm{k}}(\mathrm{n}-1)+\phi_{\mathrm{k}-1}(\mathrm{n}-1), \quad(\mathrm{k} \geq 1)$.
Proof. $\phi_{\mathrm{k}}(\mathrm{n})$ is obtained from $\phi_{\mathrm{k}-1}(\mathrm{r}), 1 \leq \mathrm{r} \leq \mathrm{n}-1$, in the following way:

Let [U] be the system of distinct non-null vectors generated for a particular value of $\mathrm{r}(1<\mathrm{r} \leq \mathrm{n}-1)$ in which the first $\mathrm{k}-1$ components in
each vector are fixed and the other components are arranged in descending order. Let

$$
\mathrm{U}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \cdots, \mathrm{u}_{\mathrm{r}}\right) \quad[\mathrm{U}]
$$

Define

$$
U^{\prime}=\left(n-r, u_{1}, u_{2}, \cdots, u_{r}\right)
$$

There is a one-one correspondence between U, U^{\prime} and as U runs through the vectors in [U] we obtain a system of distinct non-null vectors in which the non-zero components sum to n and the first k components are fixed. As r runs through all integral values from 1 to $n-1$ we obtain collectively all the distinct non-null vectors in $\phi_{\mathrm{k}}(\mathrm{n})$ except

$$
\mathrm{V}=\left(\mathrm{n}, \frac{0,0, \cdots, 0)}{\mathrm{n}-1},\right.
$$

hence,

$$
\begin{aligned}
\phi_{k}(\mathrm{n}) & =1+\sum_{\mathrm{r}=1}^{\mathrm{n}-1} \phi_{\mathrm{k}-1}(\mathrm{r}) \\
& =\left(1+\sum_{\mathrm{r}=1}^{\mathrm{n}+2} \phi_{\mathrm{k}-1}(\mathrm{r})\right)+\phi_{\mathrm{k}-1}(\mathrm{n}-1) \\
& =\phi_{\mathrm{k}}(\mathrm{n}-1)+\phi_{\mathrm{k}-1}(\mathrm{n}-1)
\end{aligned}
$$

Using this result and the values for $\phi_{0}(\mathrm{n})$ which are to be taken as initial values we obtain Table 1 for $1 \leq n \leq 10$. We take $\phi_{0}(0)=0$, and for $k>$ n and finite we may also put $\phi_{\mathrm{k}}(\mathrm{n})=\phi_{\mathrm{n}}(\mathrm{n})$ since this simply entails expanding the vectors in $[\mathrm{V}]$ by adding a further $\mathrm{k}-\mathrm{n}$ zero components on the right in each vector. These values of $\phi_{k}(\mathrm{n})$ fall below the leading diagonal in the table and are omitted.

We note also that the binomial coefficients also satisfy a similar recurrence relation.

Table 1

n	0	1	2	3	4	5	6	7	8	9	10
ϕ_{0}	0	1	2	3	5	7	11	15	22	30	42
ϕ_{1}		1	2	4	7	12	18	30	45	67	97
ϕ_{2}			2	4	8	15	27	46	76	121	188
ϕ_{3}				4	8	16	31	58	104	180	301
ϕ_{4}					8	16	32	63	121	225	405
ϕ_{5}						16	32	64	127	248	473
ϕ_{6}							32	64	128	255	503
ϕ_{7}								64	128	256	511
ϕ_{8}									128	256	512

Here ϕ_{i} stands for $\phi_{i}(n) \quad(0 \leq i \leq 8)$.
Corollary 1. $\quad \phi_{n-2}(n)=2^{n-1} \quad, \quad(n \geq 2)$.
Proof. By Theorem 3,

$$
\sum_{s=0}^{n-3}\left(\phi_{n-2-s}(n-s)-\phi_{n-3-s}(n-s-1)\right)=\sum_{s=0}^{n-3} \phi_{n-2-s}(n-s-1)
$$

that is,

$$
\phi_{n-2}(\mathrm{n})-\phi_{0}(2)=\sum_{\mathrm{s}=1}^{\mathrm{n}-2} 2^{\mathrm{s}}
$$

by Theorem 2, hence,

$$
\begin{aligned}
\phi_{\mathrm{n}-2}(\mathrm{n}) & =2\left(2^{\mathrm{n}-2}-1\right)+\phi_{0}(2) \\
& =2^{\mathrm{n}-1}
\end{aligned}
$$

The following result can also be obtained by using similar difference methods.

Corollary 2. $\quad \phi_{n-3}(n)=2^{n-1}-1, \quad n \geq 3$.
Before we state a general expression for $\phi_{n-j}(n), 3 \leq j \leq n-1$, we prove the following lemmas.

Lemma 1.

$$
\sum_{r=0}^{n-j-1}\binom{j-3+r}{r}=\binom{n-3}{n-j-1}, \quad 3 \leq j \leq n-1, \quad n \geq 4
$$

Proof.

$$
\begin{aligned}
\sum_{r=0}^{n-j-1}\binom{n-3+r}{r} & =\sum_{r=1}^{n-j-1}\left[\binom{j-2+r}{r}-\binom{j-3+r}{r-1}\right]+1 \\
& =\binom{n-j}{n-j-1}=1+1 \\
& =\binom{n-3}{n-j-1}
\end{aligned}
$$

Lemma 2.

$$
\sum_{r=0}^{q-2}\binom{p+r}{r} 2^{q-r}=\sum_{r=0}^{q-3}\binom{p+r+1}{r} 2^{q-r-1}+4\binom{p+q-1}{q-2}, q \geq 2
$$

Proof.

$$
\begin{aligned}
& \sum_{r=0}^{q-2}\binom{p+r}{r} 2^{q-r}=\binom{p+1}{0} 2^{q-1}+\left[\binom{p+1}{0}+\binom{p+1}{1}\right] 2^{q-1} \\
& +\sum_{r=2}^{q-2}\binom{p+r}{r} 2^{q-r}, \\
& =\binom{p+1}{0} 2^{q-1}+\binom{p+2}{1} 2^{q-2}+\left[\binom{p+2}{1}+\binom{p+2}{2}\right] 2^{q-2}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{r=3}^{q-2}\binom{p+r}{r} 2^{q-r} \\
& \quad \cdot \\
& \quad \cdot \\
& =\sum_{r=0}^{q-3}\binom{p+r+1}{r} 2^{q-r-1}+4\binom{p+q-1}{q-2} .
\end{aligned}
$$

Theorem 4.

$$
\begin{gathered}
\phi_{n-j}(n)=\sum_{r=0}^{n-j-1}\binom{j-3+r}{r} 2^{n-j-r+1}+\sum_{r=3}^{j}\binom{n-r-1}{j-r} \phi_{0}(r), \\
3 \leq j \leq n-1, \quad n \geq 4
\end{gathered}
$$

Proof. When $j=3$, the right-hand side is

$$
\begin{aligned}
& \sum_{\mathrm{r}=0}^{\mathrm{n}-4} 2^{\mathrm{n}-\mathrm{r}-2}+\phi_{0}(3) \\
& \quad=2^{\mathrm{n}-1}-4+3 \\
& \quad=2^{\mathrm{n}-1}-1
\end{aligned}
$$

By Corollary 2 above, theorem is true for $j=3$. Assuming it is true for j, we have, by Theorem 3,

$$
\begin{aligned}
& \sum_{s=0}^{n-j-2}\left(\phi_{n-j-s-1}(n-s)-\phi_{n-j-s-2}(n-s-1)\right)=\sum_{s=0}^{n-j-2} \phi_{n-j-s-1}(n-s-1), \\
& \quad=\sum_{s=0}^{n-j-2}\left(\begin{array}{c}
n-j-s-2 \\
r=0
\end{array}\binom{j-3+r}{r} 2^{n-j-r-s}+\sum_{r=3}^{j}\binom{n-r-s-2}{j-r} \phi_{0}(r)\right),
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{r=0}^{n-j-2}\binom{j-3+r}{r} 2^{n-j-r} \sum_{s=0}^{n-j-r-2} 2^{-s}+\sum_{r=3}^{j} \phi_{0}(r) \sum_{s=0}^{n-j-2}\binom{n-r-s-2}{j-r} \text {, } \\
& =\sum_{r=0}^{n-j-2}\binom{j-3+r}{r}\left(2^{n-j-r+1}-4\right)+\sum_{r=3}^{j}\binom{n-1-r}{j-r+1} \phi_{0}(r) \text {, by Lemma 1, } \\
& =\sum_{r=0}^{n-j-1}\binom{j-3+r}{r} 2^{n-j-r+1}-4\left\{\binom{n-4}{n-j-1}+\sum_{r=0}^{n-j-2}\binom{j-3+r}{r}\right\} \\
& +\sum_{r=3}^{j}\binom{n-r-1}{j-r+1} \phi_{0}(r), \\
& =\sum_{r=0}^{n-j-2}(j-2+r) 2^{n-j-r}+4\binom{n-3}{n-j-1}-4\left\{\binom{n-4}{n-j-1}+\binom{n-4}{n-j-2}\right\} \\
& +\sum_{r=3}^{j}\binom{n-r-1}{j-r+1} \phi_{0}(r),
\end{aligned}
$$

by Lemmas 1 and 2,

$$
=\sum_{r=0}^{n-j-2}\binom{j-2+r}{r} 2^{n-j-r}+\sum_{r=3}^{j}\binom{n-r-1}{j-r+1} \phi_{0}(r) .
$$

Hence,

$$
\begin{aligned}
\phi_{n-j-1}(n) & =\sum_{r=0}^{n-j-2}\binom{j-2+r}{r} 2^{n-j-r}+\sum_{r=3}^{j}\binom{n-r-1}{j-r+1} \phi_{0}(r)+\phi_{0}(r+1), \\
& =\sum_{r=0}^{n-j-2}\binom{j-2+r}{r} 2^{n-j-r}+\sum_{r=3}^{j+1}\binom{n-r-1}{j-r+1} \phi_{0}(r) .
\end{aligned}
$$

Thus, if true for j, also true for $j+1$. This proves the theorem. This proves the theorem.
Further reductions on the result of Lemma 2 give the following: Theorem 5.

$$
\sum_{r=0}^{q-2}\binom{p+r}{r} 2^{q-r}=4 \sum_{r=0}^{q-2}\binom{p+q-1}{r}
$$

Theorem 4 can now be stated in the following way:
Lemma 3.

$$
\phi_{n-j}(n)=4 \sum_{r=0}^{n-j-1}\binom{n-3}{r}+\sum_{r=3}^{j}\binom{n-r-1}{j-r} \phi_{0}(r)
$$

Two special cases which are easily obtained from Lemma 3 are stated in Theorem 6.

$$
\begin{gathered}
\left.\left.\phi_{\frac{n-1}{2}(n)=2^{n-2}+2\binom{n-3}{\frac{n-3}{2}}+\sum_{r=3}^{\frac{n+1}{2}}\binom{n-r-1}{\frac{n+1}{2}-r} \phi_{0}(r), n \text { odd }}^{\frac{n+2}{2}(\geq 5),} \begin{array}{l}
n-r-1 \\
\phi_{\frac{n-2}{2}}^{2}(n)=2^{n-2}+\sum_{r=3}\left(\frac{n+2}{2}-r\right.
\end{array}\right) \phi_{0}(r), \quad n \text { even } \quad \geq 4\right) .
\end{gathered}
$$

The author is indebted to R. N. Burns of the University of Waterloo for his many helpful suggestions.

REFERENCES

1. Marshall Hall, Jr., Combinatorial Theory, Blaisdell Publishing Company, Toronto, 1967.
2. J. Riordan, An Introduction to Combinatorial Analysis, John Wiley and Sons, Inc., London, 1958.
