ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER

C. C. CADOGAN

University of Waterloo, Waterloo, Ontario, Canada

1. INTRODUCTION

The following problem is discussed. Let

$$V_1 = (n, \underbrace{0, \cdots}_{n-1}, 0),$$

where n is a finite positive integer. From V_1 are generated

$$V_{i+1} = (n - i, i, 0, \dots, n-2), \quad 1 \le i \le n.$$

From V_2 are generated

$$V_{n+j} = (n - 1 - j, 1, j, 0, \dots, 0), \qquad 1 \le j \le n - 1,$$

and so on, until the entire list of non-null vectors V, has been considered.

Suppose the first k $(0 \le k \le n)$ components from left to right in each vector V_i are fixed, with k = 0 meaning that none is fixed, and the remaining components are arranged from left to right in descending order of magnitude. The positive integers in each vector V_i form a partition of n and on arranging the components as above, we obtain what we define as <u>partly</u> ordered partitions of the integer n.

Let $\phi_k(n)$ denote the number of distinct non-null vectors V_i in the system generated above in which the first k components are kept fixed. The primary object of this paper is to derive a recurrence relation for $\phi_k(n)$. Several other interesting results are obtained.

2. IMMEDIATE RESULTS

Let p(n) denote the number of distinct partitions of the positive integer n. Several values of p(n) can be found in [1], page 35.

^{*}This paper was written while the author was on an N.R.C. postdoctoral fellowship at the University of Waterloo.

330 ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER [May

Let V'_i be the vector obtained from V_i (i = 1, 2, ...) by removing all zero components of V_i and let [V], [V'] denote the set of non-null vectors V_i , V'_i , respectively. There is a one-one correspondence between V_i and V'_i and hence between [V], [V']. We have,

Theorem 1. $\phi_0(n) = p(n)$.

<u>Proof.</u> The components of V'_i constitute a partition of n. Suppose the components of each vector in [V'] are arranged from left to right in descending order of magnitude. Then each V'_j $(j \neq i)$ which has the same components as V'_i after rearrangement, hence the distinct vectors in [V'] are those vectors V'_i whose components are distinct partitions of n, hence

$$\phi_0(n) = p(n) \quad .$$

<u>Theorem 2.</u> $\phi_k(n) = 2^{n-1}$, k = n or n - 1, $(n \ge 1)$. <u>Proof.</u> We show first that $\phi_{n-1}(n) = \phi_n(n)$.

$$V'_{i} = (1, \underbrace{1, \cdots}_{n}, 1)$$

is the only vector in [V'] which has more than n-1 components, hence keeping n-1 components fixed in [V'] is equivalent to keeping all n components fixed; that is,

$$\phi_{n-1}(n) = \phi_n(n)$$

Now the system [V'] contains all the compositions of the integer n, hence by a result of [2, page 124], $\phi_n(n) = 2^{n-1}$.

This proves the theorem.

We come now to the more significant results.

3. MAIN RESULTS

 $\label{eq:proof_second} \begin{array}{ll} \underline{\text{Theorem 3.}} & \phi_k(n) = \phi_k(n-1) + \phi_{k-1}(n-1), \quad (k \geq 1) \ . \\ \underline{\text{Proof.}} & \phi_k(n) \ \text{is obtained from } \phi_{k-1}(r), \ 1 \leq r \leq n-1, \ \text{in the follow-ing way:} \end{array}$

Let [U] be the system of distinct non-null vectors generated for a particular value of r $(1 \le r \le n - 1)$ in which the first k - 1 components in each vector are fixed and the other components are arranged in descending order. Let

$$U = (u_1, u_2, \dots, u_r) [U].$$

Define

$$U' = (n - r, u_1, u_2, \cdots, u_r).$$

There is a one-one correspondence between U, U' and as U runs through the vectors in [U] we obtain a system of distinct non-null vectors in which the non-zero components sum to n and the first k components are fixed. As r runs through all integral values from 1 to n - 1 we obtain collectively all the distinct non-null vectors in $\phi_k(n)$ except

$$V = (n, 0, 0, \cdots, 0),$$

hence,

$$\phi_{k}(n) = 1 + \sum_{r=1}^{n-1} \phi_{k-1}(r) ,$$

$$= \left(1 + \sum_{r=1}^{n+2} \phi_{k-1}(r)\right) + \phi_{k-1}(n-1) ,$$

$$= \phi_{k}(n-1) + \phi_{k-1}(n-1) .$$

Using this result and the values for $\phi_0(n)$ which are to be taken as initial values we obtain Table 1 for $1 \le n \le 10$. We take $\phi_0(0) = 0$, and for k > n and finite we may also put $\phi_k(n) = \phi_n(n)$ since this simply entails expanding the vectors in [V] by adding a further k - n zero components on the right in each vector. These values of $\phi_k(n)$ fall below the leading diagonal in the table and are omitted.

We note also that the binomial coefficients also satisfy a similar recurrence relation.

332	ON PARTLY ORDERED	PARTITIONS OF A	POSITIVE INTEGER	[Mov
	ON IMITEL OUDERED	FAMILIONS OF A	FOSITIVE INTEGER	Lmay

Table 1												
n	0	1	2	3	4	5	6	7	8	9	10	
ϕ_0	0	1	2	3	5	7	11	15	22	30	42	
ϕ_1		1	2	4	7	12	18	30	45	67	97	
ϕ_2			2	4	8	15	27	46	76	121	188	
ϕ_3				4	8	16	31	58	104	180	301	
ϕ_4					8	16	32	63	121	225	405	
ϕ_5						16	32	64	127	248	473	
ϕ_6							32	64	128	255	503	
φ 7								64	128	256	511	
ϕ_8									128	256	512	

Here ϕ_i stands for $\phi_i(n)$ $(0 \le i \le 8)$. <u>Corollary 1.</u> $\phi_{n-2}(n) = 2^{n-1}$, $(n \ge 2)$. <u>Proof.</u> By Theorem 3,

$$\sum_{s=0}^{n-3} (\phi_{n-2-s} (n - s) - \phi_{n-3-s} (n - s - 1)) = \sum_{s=0}^{n-3} \phi_{n-2-s} (n - s - 1),$$

that is,

.

.

.

$$\phi_{n-2}(n) - \phi_0(2) = \sum_{s=1}^{n-2} 2^s$$
,

by Theorem 2, hence,

$$\phi_{n-2}(n) = 2(2^{n-2} - 1) + \phi_0(2)$$
,
= 2^{n-1}

.

The following result can also be obtained by using similar difference methods.

prove the following lemmas.

Lemma 1.

$$\sum_{r=0}^{n-j-1} \begin{pmatrix} j & -3 & +r \\ & r \end{pmatrix} = \begin{pmatrix} n & -3 \\ n & -j & -1 \end{pmatrix}, \quad 3 \leq j \leq n-1, \quad n \geq 4.$$

$$\frac{\operatorname{Proof.}}{\sum_{r=0}^{n-j-1}} \binom{n-3+r}{r} = \sum_{r=1}^{n-j-1} \left[\binom{j-2+r}{r} - \binom{j-3+r}{r-1} \right] + 1$$
$$= \binom{n-j}{n-j-1} = 1+1$$
$$= \binom{n-3}{n-j-1} .$$
Lemma 2.

ma

$$\sum_{r=0}^{q-2} {p + r \choose r} 2^{q-r} = \sum_{r=0}^{q-3} {p + r + 1 \choose r} 2^{q-r-1} + 4 {p + q - 1 \choose q - 2}, q \ge 2.$$

$$\begin{split} \frac{\text{Proof.}}{\sum_{r=0}^{q-2} {p + r \choose r} 2^{q-r} &= {p + 1 \choose 0} 2^{q-1} + \left[{p + 1 \choose 0} + {p + 1 \choose 1} \right] 2^{q-1} \\ &+ \sum_{r=2}^{q-2} {p + r \choose r} 2^{q-r} \\ &= {p + 1 \choose 0} 2^{q-1} + {p + 2 \choose 1} 2^{q-2} + \left[{p + 2 \choose 1} + {p + 2 \choose 2} \right] 2^{q-2} \end{split}$$

$$+ \sum_{r=3}^{q-2} {p + r \choose r} 2^{q-r} ,$$

$$= \sum_{r=0}^{q-3} {p + r + 1 \choose r} 2^{q-r-1} + 4 {p + q - 1 \choose q - 2} .$$

Theorem 4.

.

•

•

.

$$\begin{split} \phi_{n-j}(n) &= \sum_{r=0}^{n-j-1} \left(\begin{array}{ccc} j &-3 &+ r \\ & r \end{array} \right) 2^{n-j-r+1} + \sum_{r=3}^{j} \left(\begin{array}{ccc} n &- r &- 1 \\ j &- r \end{array} \right) \phi_0(r) \quad \text{,} \\ & 3 \leq j \leq n-1 \text{,} \quad n \geq 4 \text{.} \end{split}$$

<u>**Proof.**</u> When j = 3, the right-hand side is

$$\sum_{r=0}^{n-4} 2^{n-r-2} + \phi_0(3)$$
$$= 2^{n-1} - 4 + 3$$
$$= 2^{n-1} - 1 \qquad .$$

By Corollary 2 above, theorem is true for j = 3. Assuming it is true for j, we have, by Theorem 3,

$$\sum_{s=0}^{n-j-2} (\phi_{n-j-s-1}(n-s) - \phi_{n-j-s-2}(n-s-1)) = \sum_{s=0}^{n-j-2} \phi_{n-j-s-1}(n-s-1) ,$$
$$= \sum_{s=0}^{n-j-2} \left(\sum_{r=0}^{n-j-s-2} {j-3+r \choose r} 2^{n-j-r-s} + \sum_{r=3}^{j} {n-r-s-2 \choose j-r} \phi_0(r) \right) ,$$

1971] ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER 335

$$= \sum_{r=0}^{n-j-2} {j-3+r \choose r} 2^{n-j-r} \sum_{s=0}^{n-j-r-2} 2^{-s} + \sum_{r=3}^{j} \phi_0(r) \sum_{s=0}^{n-j-2} {n-r-s-2 \choose j-r},$$

$$= \sum_{r=0}^{n-j-2} {j-3+r \choose r} (2^{n-j-r+1}-4) + \sum_{r=3}^{j} {n-1-r \choose j-r+1} \phi_0(r) , \text{ by Lemma 1,}$$

$$= \sum_{r=0}^{n-j-1} {j-3+r \choose r} 2^{n-j-r+1} - 4 \left\{ {n-4 \choose n-j-1} + \sum_{r=0}^{n-j-2} {j-3+r \choose j-r+1} \right\}$$

$$+ \sum_{r=0}^{j} {n-r-1 \choose j-r+1} \phi_0(r) ,$$

$$= \sum_{r=0}^{n-j-2} {j-2+r \choose r} 2^{n-j-r} + 4 {n-3 \choose n-j-1} - 4 \left\{ {n-4 \choose n-j-1} + {n-4 \choose n-j-2} \right\}$$

$$+ \sum_{r=0}^{j} {n-r-1 \choose j-r+1} \phi_0(r) ,$$

by Lemmas 1 and 2,

$$= \sum_{r=0}^{n-j-2} {j-2+r \choose r} 2^{n-j-r} + \sum_{r=3}^{j} {n-r-1 \choose j-r+1} \phi_0 (r) .$$

Hence,

$$\begin{split} \phi_{n-j-1}(n) &= \sum_{r=0}^{n-j-2} {j-2+r \choose r} 2^{n-j-r} + \sum_{r=3}^{j} {n-r-1 \choose j-r+1} \phi_0(r) + \phi_0(r+1) , \\ &= \sum_{r=0}^{n-j-2} {j-2+r \choose r} 2^{n-j-r} + \sum_{r=3}^{j+1} {n-r-1 \choose j-r+1} \phi_0(r) . \end{split}$$

Thus, if true for j, also true for j + 1. This proves the theorem.

This proves the theorem.

Theorem 6.

Further reductions on the result of Lemma 2 give the following: Theorem 5.

$$\sum_{r=0}^{q-2} \binom{p + r}{r} 2^{q-r} = 4 \sum_{r=0}^{q-2} \binom{p + q - 1}{r} .$$

Theorem 4 can now be stated in the following way: Lemma 3.

$$\phi_{n-j}(n) = 4 \sum_{r=0}^{n-j-1} {n-3 \choose r} + \sum_{r=3}^{j} {n-r-1 \choose j-r} \phi_0(r) .$$

Two special cases which are easily obtained from Lemma 3 are stated in

$$\begin{split} \phi_{\underline{n-1}} & (n) = 2^{n-2} + 2 \binom{n-3}{\frac{n-3}{2}} + \sum_{r=3}^{\frac{n+1}{2}} \binom{n-r-1}{\frac{n+1}{2}} \phi_0(r), n \text{ odd} \quad (\geq 5) , \\ & \phi_{\underline{n-2}} & (n) = 2^{n-2} + \sum_{r=3}^{\frac{n+2}{2}} \binom{n-r-1}{\frac{n+2}{2}-r} \phi_0(r), n \text{ even} \quad (\geq 4) . \end{split}$$

The author is indebted to R. N. Burns of the University of Waterloo for his many helpful suggestions.

REFERENCES

- 1. Marshall Hall, Jr., <u>Combinatorial Theory</u>, Blaisdell Publishing Company, Toronto, 1967.
- 2. J. Riordan, <u>An Introduction to Combinatorial Analysis</u>, John Wiley and Sons, Inc., London, 1958.

~~