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SUMMARY 

Sufficient conditions are given for the existence and unity of the solution 
of an initial-value problem with linear partial difference equations. From 
this s in particular, assertions about the existence of compatibility conditions 
between initial values can be derived in case9 by the formulation of a prob-
lem (perhaps a discretization of a partial differential equation) or by the 
method of solution, more than the required initial values goes into the cal-
culation. With the aid of a two-dimensional operational calculus, certain 
applications are investigated. 

INTRODUCTION 

In the classical work [1] of A. A. Markoff, there is an existence and 
uniqueness theorem for partial difference equations of the form 

(1) x ,- ,- - a x ,- = b x ,. , 
N m+l5n+l mn m9n+l mn m+k?n 

(m,n > 0, integralj k fixed natural number) , 

for a desired complex-valued function x = x with given initial values 
^ mn & 

x (m > k) and x (n > 1). The proof is conducted by investigation of 
mo N - on N "" F J & 

a system of infinitely many ordinary difference equations equivalent to (1). 
Here j in Theorem 19 an essentially more general initial-value problem for 
linear partial difference equations of arbitrary order will be treated by which 
the ideas of Ch. Jordan [2] on the subject are made precise. 

The applications in the second part of the work show that the two-
dimensional discrete operational calculus developed in [3] is appropriate to 
give in certain cases the solution, determined uniquely according to Theorem 
l, in closed form and the possibly necessary compatibility conditions between 
the initial values explicitly. 

t r a n s l a t e d by P. F. Byrd7 San Jose State College, San Jose, California. 
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EXISTENCE AND UNIQUENESS THEOREMS 

We consider the linear partial difference equation 
M 

( 2 ) D ( X ) = E a i jXm+i,n+ j
 = bmn ( m ' n * °> i n t e ^ r a l ) • 

k , j=i ,o 
of order (k9H) with given complex-valued functions 

a.. = a..(m,n), b i j 13 m n 

Let k > 1, I > 1, and for at least one i or j the coefficients a. 9 a ., 
J 10 oj 

a.-, a, . should not vanish. 
The question arises which of the initial values 

x . (j = 0, 1, e 9 8
 9i - 1) 

mj J 

x. (i = 0, 1, • • • , k - 1) 
i n 5 9 9 

should be prescribed so that the function x is uniquely determined by (2) 
for all remaining m9n > 0. An answer to this is given by the following: 

Theorem 19 The difference equation (2) of order (k,£) possesses ex-
actly one solution if, for all m,n > 0, 

(a) ak f 0 for j = i^ < 1 and for j = iQ < ^ 5 a^ = 0 for j > j?k 

holds j and the initial values 

x . = J (j = 0, 1, • • • , £. ; j f £«; m > 0) , 
mj m J k J u 

(3) x. = jS1 (i = 0, 1, • • • , k - 1; n > 0) 
in ^n ' 

OL) = p] 
1 J 

are prescribed, or if 

a. ^ 0 for i = kj < k and for i = k0 < kA 
( b ) a., = 0 for i > kj 

i i * 
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holds and the initial values 

(4) mJ m 

x. 
in 

= j8* (i = 0, 1, . . - , kt- i 7̂  k0; n > 0) with a] = £ 
ii * i i 

are prescribed. For £, = 0 (in the case (a)) or kg = 0 (case (b)) the first 
equation of (3) or the second of (4), respectively, drops out. 

Proof. We consider case (a) and solve equation (2)for x ,, ,fl which 
— m+Kijn+xQ 

is possible because a, 0 ^ 0. For m = n = 0, there results , after insert-
ing the initial values (3), 

( k-l ,£ £k 

boo - S y$ - E \fl 
i,3=0,0 j=0 ^ 1 3 + £ ° For ft, = 0 and thus #0 = 0, the sum 2Z\-<\ drops out in agreement with 

the concluding remark of the theorem. Since a, f 0, the equation 

( k-l ,£ ^k"1 

bmm ' £ a i j X m + j , n + j 2 akjXm+k,n+j 
i,j=0.0 j=0 

follows from (2), and there results with (3) the function values x, (n > £. ). 
If the function values up to x . - (p > 2) are determined, then it fol-
lows for 2 < p <£ . that 

k - l , l V 1 £k"P 
JV Xk,£k+p l /ak,£.[bop" S aij^+p" S \ f k , j 4 p ~ E \ f k 

\ 1,3=0,0 i=£k™p+l j=0 

For p > L , the last sum drops out and the lower limit of the second sum is 
set to zero. The elements x result analogously for the rows m > k 
(the function x being regarded as an infinite matrix) by use of the ele-
ments standing at hand in the immediate upper k rows, which are given 
either by (3) or are determined by (3) and (5). 
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For the case (b), one notes that (2) can be solved respectively for 
xm-fk0?n-^ o r x m + k l 9 n ^ b e c a u s e %/ * ° o r akl9£ * °- * an analogous 
way as with (a) the function values x (m = k0, m > k1? n > 1) are de-
termined column-wise, 

The proof of uniqueness of solution is triviaL If there were two solutions 
x f y in the case (a) and if x ^ y for m0 > k and n0 >*. , 
while x = y for m < m0 and m = m0, n < n0, then there immed-
iately results from (2), for m = m0 - k, n = n0 - L because a. - f 0, 
a contradiction. In case (b), the same holds for n0 = #0 < £, . 

In applications 9 the case when £0 = L = 1 and k0 = kj often occurs; 
then it follows that k. = k and the distinction between cases is cancelled. 
The solution x of (2) Is then uniquely determined by the specification of 
k + £ initial functions, namely by the first k rows and the first columns, 
(See example 1°, 2°.) Also, if L < £ or kt < k, occasionally k + £ initial 
values x (j = 0, • • • , £ - 1), x. (i = 0, e e • , k - 1) are considered as 
prescribed. Compatibility conditions between these must then exist so that 
in the case (a) the £ -£, functions x . (j = £0, £, + 1, • • • , £ - 1) and in 
case (b) the k - kA functions x. (i = fy, kj + 1, • • • , k - 1) are already 
respectively determined by the remaining k + £, or £ + kj functions. (See 
example 3°, 4°, 5°.) 

APPLICATIONS 
In the treatment of the following applications, we make use of the oper-

ational calculus developed in [3]. It is shown there that the set of complex-
valued functions x = x of integral variables m,n with vanishing function 

mn & & 

values for m < M and all n for n < N(m), m > M (for each function an 
integer M exists and a function N(m) ) forms a field by means of ordinary 
addition and of two-dimensional Cauchy product as multiplication. The sub-
set D of functions with M = 0 and N(m) = 0 is an integral domain. For 
functions x E D, the difference theorem 

x ,i ,i = P Q x m+k.n+1 v n mn 
(6) k - 1 

£ V 1 k-i 

i=0 

£-1 k - l , £ - l 
k r ^ £-1 , V"* k-i £-i 

- ? L q x m j + 2^ p q xij 
j=0 i , j=0 ,0 
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holdsj where x , x. and x.. can be understood as functions from D 
which at least for n = 0 or m = 0 and m = n = 0 possess nonvanishing 
function values; p5q are displacement functions from Q5 with k,£ being 
natural numbers. 

1°. The equation 
Xm+29n+2 * Xm-KL,n+2 " Xm+2?n+l " Xm?n+2 + 3 xm+l5n+l " Xm+25n = ° 

(m?n > 0) 
related to Fibonacci numbers was treated in [4] and [5]. Its solution accord-
ing to Theorem 1 is uniquely determined because 

ik = i = ki = k = 2 , 

if the k + 1 = 4 initial values x Q, x - , xQ , x- (so far as k0 = £0 = 2 
is chosen) are prescribed independently of one another. This solution was 
represented in [5] in closed form. 

2°, The equation 

, 2m + n + 3 . ^ m 

x = x + • —. x ,- (m5n > 0) 
m+l?n+l m+l ,n 2m + 2 m,n+l 

possesses the solutions1 

/ m + i \ | 2 m + n + l \ , 0 n / m + n \ 
V m ) V 2 m + 2i + l J ^ ^ = ^mn 2 \ m )' 

GO 

mn 
i=0 

Here. 

£k = I = kt = k = 1 . 

Thus if one chooses £0 = k0 = 1, then it follows from Theorem 1 that the 
equation is uniquely solvable if the initial functions ^-mQf x

o n are prescribed. 
Since x = y = 1 (m > 0) and xnn = y = 2n (n > 0), it immedi-

mo Jmo on •'on 
ately follows that x = y, and thus 

According to a written communication from A* Kotzauer (treated there by 
complete induction),, 
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m , n = 0 , 1 , - • • . E / m + i \ / 2m + n + 1 \ _ n / m + n\ 
\ m / \ 2 m + 2i + 1 / \ m ) 

i=0 

3°. The equation 

(7) x . + x ^ 0 = 0 (m,n > 0) 
m + 3 , n m,n+2 ' 

of o r d e r (3.2) p o s s e s s e s , on account o f £ , = 0 < 2 = £, k^ = 0 < 3 = k, 

exact ly one solution from D if e i the r in the ca se (a) the th ree init ial func-

tions x = fr (i = 0, 1, 2) according to (3), o r in the case (b) the two 

functions x . = or (j = 0,1) a r e p r e s c r i b e d according to (4). With appl i -

cation of the difference theorem (6) the re a p p e a r s , however , k + it = 5 

init ial functions in the operat ional r epresen ta t ion of equation (7): 

(8) x = x = - £ (p3/3° + p 2 ^ 1 + p/32 + q2^0 + qa1 ) . 
mn o NF *n F Ho. F r n H m H m 

P 
With i t , 

+ q3 \ 0 
= P3

 = ) ( - D m / 3 for n = 2 m / 3 , n = 0 ,3 ,° 
p3 + q3 ( 0 o therwise 

The requ i red compatibi l i ty conditions between the init ial functions a r e , as 

r e s u l t f rom (8) for n = 0 o r n = 1 af te r easy calculat ion in the field Q, 

/n\ J / i x T n i / S l / m .. n - ^ AX ... 40 f o r m =0(3) 
(9) or = (-l)L ' J / S . L O r / Q , (j = 0 , 1 ; m > 0) with € = K . - / 0 / 

m ^ j + 2 [ m / 3 ] J m \ l f o r m E l ( 3 ) 
(2 f o r m = 2(3) o r , af ter f$ i s solved, *n 

/ IA\ oi / 1 x ^ / 2 1 ^n ,. A i o ^ A\ -̂ -u * ) ° f ° r n = 0 (2) (10) B = (-l)L ' la. _ / o (l = 0 , 1 , 2 ; n > 0) with 8 = 1 . , * i /o\ • Ho. i+3 n /2 . n (1 for n = .1 (2) 

If one combines the conditions (9) with the rep resen ta t ion (8), the re r e s u l t s 

the solution of equation (7) de te rmined according to case (a) of Theorem 1 in 

D, namely , 
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( 1 1 ) Xmn = ^ ^ ^ / S j + n < m > n ^ °> > 

while in case (b), the solution can be represented with the aid of (10) in de-
pendence of initial functions x . = c? (i = 0. 1). in the form 

(12) v = w ) ^ 1 ^ ^ ] <m>n °̂> 
41. As an example of a discretized partial differential equation, let us 

consider the difference equation 

(13) z i Q ,n - z ,- l 0 - z ,i + z , i = 0 (m5n> 0) s m+2,n+l m+l,n+2 m+l,n m,n+l \ > — / 

of order (2.2) appropriate for the wave equation z = z,,. Because #, = kj 
XX t»L K. 

= 1, the solution of (13) according to Theorem 1 is uniquely secured if three 
initial functions are prescribed, in the case (a) z , z, , z , and in the ^ on In mo 
case (b), zmo$ z ^ , zQn. For k0, £0, only the possibility k0 = % = 1 ex-
ists. A compatibility condition between the four initial functions z . (j = 
0 , 1 ) , z. (i = 0, 1) is thus necessary. One obtains in [6] further evidence 
and the proof of existence of a solution from D only after application of an 
operational calculus to equation (13) where the initial functions are specially 
selected. We again use the difference law (6) with which, for arbitrary initial 
values z m j = a^ (j = 0, 1), z i n = ^ (i = 0, 1), a\ = j8J (i,j = 0,1), 
there results the operational representation 

(14) z = pq/(pq - l)(j3j» + a ^ ) + uy(|S£ - <*£ - v ^ + u ^ ) 

(u,v in Q inverse to p,q) with 

.? ( 0 . for n = 0 1? (0, 
^n = [ l f o r n > 0 ' ( i = 0 ^ ^ «m = ( ^ 

for m = 0 
for m > 0 

and 

p2q 
(p - q)(pq - T) 

. j m + n + 1 for Jnf < m, m > 0 ^ 
I 0 otherwise 
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From this, there follows, after easy calculation in Q, upon use of 

pq/(pq - 1) = 8 m n E D 

(S Kronecker delta) for n = 0, the required compatibility condition 

(15) or* - 01
 M = o° - /3° , m > 0 . 

N m+1 ^m+1 m ' m 

If one specializes the initial functions according to [6] , namely, 

(16) z A = z - = a0 , z = 0 , z. = /31 , 
N ' mO m l m ' on 5 in Hn 9 

then (15) transforms to the condition 

(17) a° - aQ , = p1 (m > 1) , 
x m m-1 ' m \ - / > 

which is equivalent to the equation 

< = £ > ? (n> 1) . 
1 

given in [6]. 
With the compatibility condition (15), the solution of (13) can be repre-

sented in dependence on three initial functions. In the case of (a), these are 
a0 , 6 (i = 0, 1) and there results m n 

z = 8 (/3°f + a0 ) + uy(/31? - 0* + P° , - jS° - ) . m n r n m J r n *m ' i n - l ' n - l 

If one carrys out the multiplication (in Q), one obtains finally the solution 
z £ D in the form 

0 
T j a. = 0 set 
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min(m,n) 
(18) z = V (jS1 

m+n+l-2i rm+n-2i 
i=l 

0° for 0 < m < n, m-n 
Q/0 for o < n < m . mon ~ 

For the special initial functions (16), equation (18) yields 

Min(m,n) I n * n <r *-
N 1 ^or ~ m — n 9 

mn 2-4 ^m+n+l-2i J cfi for 0 < n < m 
. - I m-n 
i= l I 

and one easily recognizes with the aid of the special compatibility condition 
(17) that this function is in agreement with that given in [6]. 

5°9 The linear difference equation of order (1,1) with constant 
coefficients 

<19> ^ m + l . n - b x m , n + l " c xmn = ° ( m ' n - 0 ; a ' b ^ 0 ) 

leads to the operator representation 

(20) Y = ?£_ 
ap - bq - c Y ' a UqC7 

with initial functions x Q = cP = a , xQ n = 0^ = (3. On account of the 
vanishing of the coefficients x + 1 . n + 1 » there exists, according to Theorem 
1, a compatibility condition between and B* This results from (20), 
since, for n = 0, 

0 otherwise 

and (qya) Q = 0, in the form 

m . 
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In the case (a) of Theorem 1 (x prescribed), the solution of (19) can be 
represented, with the aid of the compatibility condition (21), as a function of 
fi alone, namely 

i=0 

which results , after easy calculation4. 
If one eliminates x and a in (20) with the aid of (21) and (22), there 

results the operator relation 

m / m } 

»-mE(?>'*m-\+i - 5 ^ ^ » - ^zfiy^ 
(m,n > 0) 

which for j3 = d (d = constant) changes to 

( H * r d° • *^4 ^ - * H M r ) «-> *»»• 
*For -m < n < -1 

x mn 

m+n t 

and from (21) and 

& ( p ; v ) ( r r l ) - ( , t , . + r + 1 ) (p'q'r-°* 
i=0 

it follows that x = 0 . 
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and, for a = b, c = 0, to 

(23) p = — (p/3 - qp ) (m?n > 0; p = p , £ D). 
mn p - q n m ? - ^mn pm+n 

A formula analogous to (23) is known in the operational calculus for functions 
of two continuous variables (see perhaps [7]; p,q difference operators) in 
the theory of two-dimensional Laplace transformation (see [8]). 
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