ON AN INITIAL-VALUE PROBLEM FOR LINEAR PARTIAL DIFFERENCE EQUATIONS *

W. JENTSCH

University of Halle/S. Germany

SUMMARY
Sufficient conditions are given for the existence and unity of the solution of an initial-value problem with linear partial difference equations. From this, in particular, assertions about the existence of compatibility conditions between initial values can be derived in case, by the formulation of a problem (perhaps a discretization of a partial differential equation) or by the method of solution, more than the required initial values goes into the calculation. With the aid of a two-dimensional operational calculus, certain applications are investigated.

INTRODUCTION

In the classical work [1] of A. A. Markoff, there is an existence and uniqueness theorem for partial difference equations of the form

$$
\begin{gather*}
x_{m+1, n+1}-a_{m n} x_{m, n+1}=b_{m n} x_{m+k, n}, \tag{1}\\
(m, n \geq 0, \text { integral, } k \text { fixed natural number) }
\end{gather*}
$$

for a desired complex-valued function $x=x_{m n}$ with given initial values $x_{m o}(m \geq k)$ and $x_{o n}(n \geq 1)$. The proof is conducted by investigation of a system of infinitely many ordinary difference equations equivalent to (1). Here, in Theorem 1, an essentially more general initial-value problem for linear partial difference equations of arbitrary order will be treated by which the ideas of Ch. Jordan [2] on the subject are made precise.

The applications in the second part of the work show that the twodimensional discrete operational calculus developed in [3] is appropriate to give in certain cases the solution, determined uniquely according to Theorem 1 , in closed form and the possibly necessary compatibility conditions between the initial values explicitly.
*Translated by P. F. Byrd, San Jose State College, San Jose, California.

EXISTENCE AND UNIQUENESS THEOREMS

We consider the linear partial difference equation
(2) $D(x)=\sum_{k, j=1,0}^{k, l} a_{i j} x_{m+i, n+j}=b_{m n} \quad(m, n \geq 0$, integral),
of order (k, ℓ) with given complex-valued functions

$$
a_{i j}=a_{i j}(m, n), b_{m n}
$$

Let $k \geq 1, \quad \ell \geq 1$, and for at least one i or j the coefficients $a_{i o}, a_{o j}$, $a_{i 1}, a_{k j}$ should not vanish.

The question arises which of the initial values

$$
\begin{array}{ll}
x_{m j} & (j=0,1, \cdots, \ell-1) \\
x_{\text {in }} & (i=0,1, \cdots, k-1)
\end{array}
$$

should be prescribed so that the function $x_{m n}$ is uniquely determined by (2) for all remaining $m, n \geq 0$. An answer to this is given by the following:

Theorem 1. The difference equation (2) of order (k, l) possesses exactly one solution if, for all $\mathrm{m}, \mathrm{n} \geq 0$,
(a) $a_{k j} \neq 0$ for $j=\ell_{k} \leq 1$ and for $j=\ell_{o} \leq \ell_{k}, \quad a_{k j}=0$ for $j>\ell_{k}$
holds, and the initial values

$$
\begin{gather*}
\mathrm{x}_{\mathrm{mj}}=\alpha_{\mathrm{m}}^{\mathrm{j}} \quad\left(\mathrm{j}=0,1, \cdots, \ell_{\mathrm{k}} ; \mathrm{j} \neq \ell_{0} ; \mathrm{m} \geq 0\right) \\
\mathrm{x}_{\mathrm{in}}=\beta_{\mathrm{n}}^{\mathrm{i}} \quad(\mathrm{i}=0,1, \cdots, \mathrm{k}-1 ; \mathrm{n} \geq 0) \tag{3}\\
\alpha_{\mathrm{i}}^{\mathrm{j}}=\beta_{\mathrm{j}}^{\mathrm{i}}
\end{gather*}
$$

are prescribed, or if

$$
\begin{gather*}
a_{i \ell} \neq 0 \text { for } i=k_{1} \leq k \text { and for } i=k_{0} \leq k_{1} \\
a_{i \ell}=0 \text { for } i>k_{1} \tag{b}
\end{gather*}
$$

holds and the initial values

$$
\begin{align*}
& \mathrm{x}_{\mathrm{mj}}=\alpha_{\mathrm{m}}^{\mathrm{j}}(\mathrm{j}=0,1, \cdots, \ell-1 ; \mathrm{m} \geq 0) \tag{4}\\
& \mathrm{x}_{\mathrm{in}}=\beta_{\mathrm{n}}^{\mathrm{i}}\left(\mathrm{i}=0,1, \cdots, \mathrm{k}_{\mathrm{l}} \cdot \mathrm{i} \neq \mathrm{k}_{0} ; \mathrm{n} \geq 0\right) \text { with } \alpha_{\mathrm{i}}^{\mathrm{j}}=\beta_{\mathrm{j}}^{\mathrm{i}}
\end{align*}
$$

are prescribed. For $\ell_{k}=0$ (in the case (a)) or $k_{\ell}=0$ (case (b)) the first equation of (3) or the second of (4), respectively, drops out.

Proof. We consider case (a) and solve equation (2) for $x_{m+k, n+l_{0}}$ which is possible because $a_{k_{, \ell}} \neq 0$. For $m=n=0$, there results, after inserting the initial values (3),

$$
x_{k, \ell_{0}}=1 / a_{k, \ell_{0}}\left(b_{00}-\sum_{i, j=0,0}^{k-1, \ell} a_{i j} \beta_{j}^{i}-\sum_{\substack{j=0 \\ j+\ell_{0}}}^{\ell} a_{k j} \alpha_{k}^{j}\right)
$$

For $\ell_{k}=0$ and thus $\ell_{0}=0$, the sum $\sum a_{k j} \alpha_{k}^{j}$ drops out in agreement with the concluding remark of the theorem. Since $a_{k, \ell_{k}} \neq 0$, the equation
(5) $x_{m+k, n+\ell}=1 / a_{k, \ell}\left(b_{m m}-\sum_{i, j=0.0}^{k-1, \ell} a_{i j} x_{m+j, n+j} \sum_{j=0}^{\ell_{k}-1} a_{k j} x_{m+k, n+j}\right)$
follows from (2), and there results with (3) the function values $x_{k n}\left(n>\ell_{k}\right)$. If the function values up to $\mathrm{x}_{\mathrm{k}, \ell_{\mathrm{k}}+\mathrm{p}-1}(\mathrm{p} \geq 2)$ are determined, then it follows for $2 \leq \mathrm{p} \leq_{\ell}$ that

$$
x_{k, \ell{ }_{k}+p}=1 / a_{k, \ell}\left(b_{o p}-\sum_{i, j=0,0}^{k-1, \ell} a_{i j} \beta_{j+p}^{i}-\sum_{i=\ell_{k}-p+1}^{\ell k_{k j}^{-1}} a_{k, j+p}-\sum_{j=0}^{\ell} a_{k j} \alpha_{k}^{j+p}\right)
$$

For $p>\ell_{k}$, the last sum drops out and the lower limit of the second sum is set to zero. The elements $x_{m n}$ result analogously for the rows $m>k$ (the function $x_{m n}$ being regarded as an infinite matrix) by use of the elements standing at hand in the immediate upper k rows, which are given either by (3) or are determined by (3) and (5).

For the case (b), one notes that (2) can be solved respectively for $x_{m+k_{0}, n+\ell}$ or $x_{m+k_{1}, n+\ell}$ because $a_{k_{0} \ell \ell} \neq 0$ or $a_{k_{1}, \ell} \neq 0$. In an analogous way as with (a) the function values $x_{m n}\left(m=k_{0}, m>k_{1}, n \geq 1\right)$ are determined column-wise.

The proof of uniqueness of solution is trivial. If there were two solutions $x \neq y$ in the case (a) and if $x_{m_{0}, n_{0}} \neq y_{m_{0}, n_{0}}$ for $m_{0} \geq k$ and $n_{0} \geq \ell_{k}$, while $\mathrm{x}_{\mathrm{mn}}=\mathrm{y}_{\mathrm{mn}}$ for $\mathrm{m}<\mathrm{m}_{0}$ and $\mathrm{m}=\mathrm{m}_{0}, \mathrm{n}<\mathrm{n}_{0}$, then there immediately results from (2), for $m=m_{0}-k, n=n_{0}-\ell_{k}$ because $a_{k, \ell_{k}} \neq 0$, a contradiction. In case (b), the same holds for $n_{0}=\ell_{0}<\ell_{k}$.

In applications, the case when $\ell_{0}=\ell_{k}=1$ and $k_{0}=k_{1}$ often occurs; then it follows that $\mathrm{k}_{\mathrm{i}}=\mathrm{k}$ and the distinction between cases is cancelled. The solution x_{mn} of (2) is then uniquely determined by the specification of $k+l$ initial functions, namely by the first k rows and the first columns. (See example $1^{0}, 2^{0}$.) Also, if $\ell_{k}<\ell$ or $k_{1}<k$, occasionally $k+\ell$ initial values $x_{m n}(j=0, \cdots, \ell-1), x_{i n}(i=0, \cdots, k-1)$ are considered as prescribed. Compatibility conditions between these must then exist so that in the case (a) the $\ell-\ell_{k}$ functions $x_{m j}\left(j=\ell_{0}, \ell_{k}+1, \cdots, \ell-1\right)$ and in case (b) the $k-k_{1}$ functions $x_{i n}\left(i=k_{0}, k_{1}+1, \cdots, k-1\right)$ are already respectively determined by the remaining $k+\ell_{k}$ or $\ell+k_{1}$ functions. (See example $3^{0}, 4^{0}, 5^{0}$.)

APPLICATIONS

In the treatment of the following applications, we make use of the operational calculus developed in [3]. It is shown there that the set of complexvalued functions $x=x_{m n}$ of integral variables m, n with vanishing function values for $\mathrm{m}<\mathrm{M}$ and all n for $\mathrm{n}<\mathrm{N}(\mathrm{m}), \mathrm{m} \geq \mathrm{M}$ (for each function an integer M exists and a function $N(m)$) forms a field by means of ordinary addition and of two-dimensional Cauchy product as multiplication. The subset D of functions with $M=0$ and $N(m)=0$ is an integral domain. For functions $x \in D$, the difference theorem

$$
\mathrm{x}_{\mathrm{m}+\mathrm{k}, \mathrm{n}+1}=\mathrm{p}^{\mathrm{k} \mathrm{q}^{\ell} \mathrm{x}_{\mathrm{mn}}}
$$

(6)

$$
-q^{\ell} \sum_{i=0}^{k-i} p^{k-i} x_{i n}-p^{k} \sum_{j=0}^{\ell-1} q^{\ell-j} x_{m j}+\sum_{i, j=0,0}^{k-1, \ell-1} p^{k-i} q^{\ell-j} x_{i j},
$$

holds, where $x_{m j}, x_{i n}$ and $x_{i j}$ can be understood as functions from D which at least for $\mathrm{n}=0$ or $\mathrm{m}=0$ and $\mathrm{m}=\mathrm{n}=0$ possess nonvanishing function values; p, q are displacement functions from Q, with k, l being natural numbers.
1^{0}. The equation

$$
\begin{gathered}
x_{m+2, n+2}-x_{m+1, n+2}-x_{m+2, n+1}-x_{m, n+2}+3 x_{m+1, n+1}-x_{m+2, n}=0 \\
(m, n \geq 0)
\end{gathered}
$$

related to Fibonacci numbers was treated in [4] and [5]. Its solution according to Theorem 1 is uniquely determined because

$$
\ell_{\mathrm{k}}=\ell=\mathrm{k}_{1}=\mathrm{k}=2
$$

if the $k+1=4$ initial values $x_{m 0}, x_{m 1}, x_{0 n}, x_{1 n}$ (so far as $k_{0}=\ell_{0}=2$ is chosen) are prescribed independently of one another. This solution was represented in [5] in closed form.
2^{0}. The equation

$$
x_{m+1, n+1}=x_{m+1, n}+\frac{2 m+n+3}{2 m+2} x_{m, n+1} \quad(m, n \geq 0)
$$

possesses the solutions ${ }^{1}$

$$
x=x_{m n}=\sum_{i=0}^{\infty}\binom{m+i}{m}\binom{2 m+n+1}{2 m+2 i+1} \text { and } y=y_{m n}=2^{n}\binom{m+n}{m}
$$

Here,

$$
\ell_{\mathrm{k}}=\ell=\mathrm{k}_{1}=\mathrm{k}=1
$$

Thus if one chooses $\ell_{0}=k_{0}=1$, then it follows from Theorem 1 that the equation is uniquely solvable if the initial functions $x_{m o}, x_{o n}$ are prescribed. Since $x_{\text {mo }}=y_{\text {mo }}=1(m \geq 0)$ and $x_{o n}=y_{o n}=2^{n}(n \geq 0)$, it immediately follows that $\mathrm{x} \equiv \mathrm{y}$, and thus

[^0]$$
\sum_{i=0}^{\infty}\binom{m+i}{m}\binom{2 m+n+1}{2 m+2 i+1}=2^{n}\binom{m+n}{m} \quad m, n=0,1, \cdots
$$
3^{0}. The equation
\[

$$
\begin{equation*}
x_{m+3, n}+x_{m, n+2}=0 \quad(m, n \geq 0) \tag{7}
\end{equation*}
$$

\]

of order (3.2) possesses, on account of $\ell_{k}=0<2=\ell$, $\mathrm{k}_{\ell}=0<3=\mathrm{k}$, exactly one solution from D if either in the case (a) the three initial functions $\mathrm{x}_{\mathrm{in}}=\beta_{\mathrm{n}}^{\mathrm{i}}(\mathrm{i}=0,1,2)$ according to (3), or in the case (b) the two functions $\mathrm{x}_{\mathrm{mj}}=\alpha_{\mathrm{m}}^{\mathrm{j}}(\mathrm{j}=0,1)$ are prescribed according to (4). With application of the difference theorem (6) there appears, however, $k+\ell=5$ initial functions in the operational representation of equation (7):

$$
\begin{equation*}
\mathrm{x}=\mathrm{x}_{\mathrm{mn}}=\frac{\mathrm{y}}{\mathrm{p}^{3}}\left(\mathrm{p}^{3} \beta_{\mathrm{n}}^{0}+\mathrm{p}^{2} \beta_{\mathrm{n}}^{1}+\mathrm{p} \beta_{\mathrm{n}}^{2}+\mathrm{q}^{2} \alpha_{\mathrm{m}}^{0}+\mathrm{q} \alpha_{\mathrm{m}}^{1}\right) \tag{8}
\end{equation*}
$$

With it,

$$
y=\frac{p^{3}}{p^{3}+q^{3}}=\left\{\begin{array}{cc}
(-1)^{m / 3} & \text { for } n=2 m / 3, n=0,3, \cdots \\
0 & \text { otherwise }
\end{array}\right.
$$

The required compatibility conditions between the initial functions are, as result from (8) for $n=0$ or $n=1$ after easy calculation in the field Q,
 or, after $\beta_{\mathrm{n}}^{\mathrm{i}}$ is solved,
(10) $\beta_{\mathrm{n}}^{\mathrm{i}}=(-1)^{[\mathrm{n} / 2]} \alpha_{\mathrm{i}+3 \mathrm{n} / 2}^{\delta_{\mathrm{n}}}(\mathrm{i}=0,1,2 ; \mathrm{n} \geq 0)$ with $\delta_{\mathrm{n}}=\left\{\begin{array}{l}0 \text { for } \mathrm{n} \equiv 0(2) \\ 1 \text { for } \mathrm{n} \equiv .1(2)\end{array}\right.$.

If one combines the conditions (9) with the representation (8), there results the solution of equation (7) determined according to case (a) of Theorem 1 in D, namely,

$$
\begin{equation*}
\mathrm{x}_{\mathrm{mn}}=(-1)^{[\mathrm{m} / 3]}{ }_{\beta} \epsilon_{2[\mathrm{~m} / 3]+\mathrm{n}}^{\epsilon_{\mathrm{m}}} \quad(\mathrm{~m}, \mathrm{n} \geq 0) \tag{11}
\end{equation*}
$$

while in case (b), the solution can be represented with the aid of (10) in dependence of initial functions $x_{m j}=\alpha_{m}^{j}(j=0,1)$, in the form

$$
\begin{equation*}
\left.\mathrm{x}_{\mathrm{mn}}=(-1)^{[\mathrm{n} / 2}\right]_{\alpha}^{\delta_{\mathrm{n}+3[\mathrm{n} / 2]}} \quad(\mathrm{m}, \mathrm{n} \geq 0) \tag{12}
\end{equation*}
$$

4. As an example of a discretized partial differential equation, let us consider the difference equation

$$
\begin{equation*}
z_{m+2, n+1}-z_{m+1, n+2}-z_{m+1, n}+z_{m, n+1}=0 \quad(m, n \geq 0) \tag{13}
\end{equation*}
$$

of order (2.2) appropriate for the wave equation $\mathrm{z}_{\mathrm{xx}}=\mathrm{z}_{\mathrm{tt}}$. Because $\ell_{\mathrm{k}}=\mathrm{k}_{1}$ $=1$, the solution of (13) according to Theorem 1 is uniquely secured if three initial functions are prescribed, in the case (a) $z_{o n}, z_{l n}, z_{m o}$, and in the case (b), $z_{m o}, z_{m l}, z_{o n}$. For k_{0}, l_{0}, only the possibility $k_{0}=l_{0}=1$ exists. A compatibility condition between the four initial functions $z_{m j}(j=$ $0,1), z_{i n}(i=0,1)$ is thus necessary. One obtains in [6] further evidence and the proof of existence of a solution from D only after application of an operational calculus to equation (13) where the initial functions are specially selected. We again use the differencelaw (6) with which, for arbitrary initial values $z_{m j}=\alpha_{m}^{j}(j=0,1), \quad z_{i n}=\beta_{n}^{i} \quad(i=0,1), \quad \alpha_{i}^{j}=\beta_{j}^{i}(i, j=0,1)$, there results the operational representation
(14) $\mathrm{z}=\mathrm{pq} /(\mathrm{pq}-1)\left(\beta_{\mathrm{n}}^{0^{\prime}}+\alpha_{\mathrm{m}}^{0}\right)+\mathrm{uy}\left(\beta_{\mathrm{n}}^{1^{9}}-\alpha_{\mathrm{m}}^{1^{\prime}}-\mathrm{v} \beta_{\mathrm{n}}^{0}+\mathrm{u} \alpha_{\mathrm{m}}^{0}\right)$
(u, v in Q inverse to p, q) with
$\beta_{\mathrm{n}}^{\mathrm{i}^{1}}=\left\{\begin{array}{ll}0 & \text { for } \mathrm{n}=0 \\ \beta_{\mathrm{n}}^{\mathrm{i}} & \text { for } \mathrm{n}>0\end{array}, \quad(\mathrm{i}=0,1), \quad \alpha_{\mathrm{m}}^{1^{\prime}}=\left\{\begin{array}{ll}0 & \text { for } \mathrm{m}=0 \\ \alpha_{\mathrm{m}}^{1} & \text { for } \mathrm{m}>0\end{array}\right.\right.$,
and

$$
y=\frac{p^{2} q}{(p-q)(p q-1)}=\left\{\begin{array}{cc}
m+n+1 & \text { for }|n| \leq m, \quad m \geq 0 \\
0 & \quad \text { otherwise }
\end{array}\right.
$$

From this, there follows, after easy calculation in Q, upon use of

$$
\mathrm{pq} /(\mathrm{pq}-1)=\delta_{\mathrm{mn}} \in \mathrm{D}
$$

(δ_{mn} Kronecker delta) for $\mathrm{n}=0$, the required compatibility condition

$$
\begin{equation*}
\alpha_{\mathrm{m}+1}^{1}-\beta_{\mathrm{m}+1}^{1}=\alpha_{\mathrm{m}}^{0}-\beta_{\mathrm{m}}^{0}, \quad \mathrm{~m} \geq 0 \tag{15}
\end{equation*}
$$

If one specializes the initial functions according to [6], namely,

$$
\begin{equation*}
z_{\mathrm{m} 0}=\mathrm{z}_{\mathrm{m} 1}=\alpha_{\mathrm{m}}^{0}, \quad \mathrm{z}_{\mathrm{on}}=0, \quad \mathrm{z}_{\mathrm{in}}=\beta_{\mathrm{n}}^{1} \tag{16}
\end{equation*}
$$

then (15) transforms to the condition

$$
\begin{equation*}
\alpha_{\mathrm{m}}^{0}-\alpha_{\mathrm{m}-1}^{0}=\beta_{\mathrm{m}}^{1} \quad(\mathrm{~m} \geq 1) \tag{17}
\end{equation*}
$$

which is equivalent to the equation

$$
\alpha_{\mathrm{n}}^{0}=\sum_{1}^{\mathrm{n}} \beta_{\mathrm{i}}^{1} \quad(\mathrm{n} \geq 1)
$$

given in [6].
With the compatibility condition (15), the solution of (13) can be represented in dependence on three initial functions. In the case of (a), these are $\alpha_{\mathrm{m}}^{0}, \beta_{\mathrm{n}}^{\mathrm{i}}(\mathrm{i}=0,1)$ and there results

$$
\mathrm{z}=\delta_{\mathrm{mn}}\left(\beta_{\mathrm{n}}^{0^{y}}+\alpha_{\mathrm{m}}^{0}\right)+\operatorname{uy}\left(\beta_{\mathrm{n}}^{1^{\prime}}-\beta_{\mathrm{m}}^{1}+\beta_{\mathrm{m}-1}^{0}-\beta_{\mathrm{n}-1}^{0}\right)
$$

If one carrys out the multiplication (in Q), one obtains finally the solution $\mathrm{z} \in \mathrm{D}$ in the form

$$
\left(\sum_{1}^{0} a_{i}=0 \quad \text { set }\right)
$$

$$
z_{m n}=\sum_{i=1}^{\min (m, n)}\left(\beta_{m+n+1-2 i}^{1}-\beta_{m+n-2 i}^{0}\right)+ \begin{cases}\beta_{m-n}^{0} & \text { for } 0 \leq m \leq n \tag{18}\\ \alpha_{m o n}^{0} & \text { for } 0 \leq n \leq m\end{cases}
$$

For the special initial functions (16), equation (18) yields

$$
z_{m n}=\sum_{i=1}^{\operatorname{Min}(m, n)} \beta_{m+n+1-2 i}^{1}+\left\{\begin{array}{cll}
0 & \text { for } & 0 \leq m \leq n \\
\alpha_{m-n}^{0} & \text { for } & 0 \leq n \leq m
\end{array}\right.
$$

and one easily recognizes with the aid of the special compatibility condition (17) that this function is in agreement with that given in [6].
5^{0}. The linear difference equation of order $(1,1)$ with constant coefficients
(19) $a x_{m+1, n}-b x_{m, n+1}-c x_{m n}=0 \quad(m, n \geq 0 ; a, b \neq 0)$
leads to the operator representation

$$
\begin{equation*}
\mathrm{x}=\frac{\mathrm{ap}}{\mathrm{ap}-\mathrm{bq}-\mathrm{c}}\left(\beta-\frac{\mathrm{b}}{\mathrm{a}} \mathrm{uq} \alpha\right) \tag{20}
\end{equation*}
$$

with initial functions $\mathrm{x}_{\mathrm{m} 0}=\alpha_{\mathrm{m}}^{0}=\mathrm{a}, \mathrm{x}_{\mathrm{on}}=\beta_{\mathrm{n}}^{0}=\beta$. On account of the vanishing of the coefficients $x_{m+1 ; n+1}$, there exists, according to Theorem 1 , a compatibility condition between and B. This results from (20), since, for $\mathrm{n}=0$,

$$
\mathrm{y}=\frac{\mathrm{ap}}{\mathrm{ap-bq-c}}=\left\{\begin{array}{cc}
\binom{\mathrm{m}}{-\mathrm{n}} \underset{u}{\left(\frac{c}{a}\right)^{\mathrm{m}}\left(\frac{\mathrm{c}}{\mathrm{~b}}\right)^{\mathrm{n}}} \quad \text { for }-\mathrm{m} \leq \mathrm{n} \leq 0
\end{array}\right.
$$

and $(q y \alpha)_{m 0}=0$, in the form

$$
\begin{equation*}
\alpha_{m}=\left(\frac{c}{a}\right)^{m} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{b}{c}\right)^{i} \beta_{i} \quad(m \geq 0) \tag{21}
\end{equation*}
$$

In the case (a) of Theorem 1 (x_{on} prescribed), the solution of (19) can be represented, with the aid of the compatibility condition (21), as a function of β alone, namely

$$
\begin{equation*}
x_{m n}=\left(\frac{c}{a}\right)^{m} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{b}{c}\right)^{i} \beta_{n+1} \in D \tag{22}
\end{equation*}
$$

which results, after easy calculation ${ }^{1}$.
If one eliminates x and α in (20) with the aid of (21) and (22), there results the operator relation

$$
\begin{array}{r}
a^{-m} \sum_{i=0}^{m}\binom{m}{i} b^{i} c^{m-i} \beta_{n+i}=\frac{1}{a p-b q-c}\left(a p \beta_{n}-b q a^{-m} \sum_{i=0}^{m}\binom{m}{i} b^{-i} c^{m-i} \beta_{i}\right) \\
(m, n \geq 0)
\end{array}
$$

which for $\beta^{\mathrm{n}}=d^{\mathrm{n}}(\mathrm{d}=$ constant $)$ changes to
$\left(\frac{c+b d}{a}\right)^{m} d^{n}=\frac{1}{a p-b q-c}\left(a p d^{n}-b q\left(\frac{c+b d}{a}\right)^{m}\right) \quad(m, n \geq 0)$,
${ }^{1}$ For $-\mathrm{m} \leq \mathrm{n} \leq-1$

$$
x_{m n}=\left(\frac{c}{a}\right)^{m}\left(\frac{c}{b}\right)^{n} \sum_{i=0}^{m+n} c^{-i}\left(\binom{m}{-n+i} b^{i} \beta_{i}-\binom{m-1-i}{-n-1} a^{i} \alpha_{i}\right)
$$

and from (21) and

$$
\sum_{i=0}^{p}\binom{p+q-i}{p-i}\binom{r+i}{i}=\binom{p+q+r+1}{r} \quad(p, q, r \geq 0)
$$

it follows that $x_{m n}=0$ 。
and, for $\mathrm{a}=\mathrm{b}, \mathrm{c}=0$, to
(23) $\beta_{\mathrm{mn}}=\frac{1}{\mathrm{p}-\mathrm{q}}\left(\mathrm{p} \beta_{\mathrm{n}}-\mathrm{q} \beta_{\mathrm{m}}\right) \quad\left(\mathrm{m}, \mathrm{n} \geq 0 ; \beta_{\mathrm{mn}}=\beta_{\mathrm{m}+\mathrm{n}} \in \mathrm{D}\right)$.

A formula analogous to (23) is known in the operational calculus forfunctions of two continuous variables (see perhaps [7]; p,q difference operators) in the theory of two-dimensional Laplace transformation (see [8]).

REFERENCES

1. A. A. Markoff, Differenzenrechung, Leipzig, 1896.
2. Ch. Jordan, Calculus of Finite Differences, New York, 1965.
3. W. Jentsch, "Charakterisierung der Quotienten in der zweidimensionalen diskreten Operatorenrechnung," Studia Math., T. XXVI, pp. 91-99 (1965).
4. L. Carlitz, "A Partal Difference Equation Related to the Fibonacci Numbers," Fibonacci Quarterly, Vol. 2, No. 3, pp. 185-196, 1964.
5. W. Jentsch, "On a Partial Difference Equation of L. Carlitz, " Fibonacci Quarterly, Vol. 4, No. 3, 1964, pp. 202-208.
6. H. Schulte, Ein direkter zweidimensionaler Operatorenkalkül zur Losung partieller Differenzengleichungen und sein Anwendung bei der numeriaschen Lösung partieller Differential-gleichungen, Köln 1967.
7. L. Berg, Einfuhrung in die Operatorenrechnung, Berlin, 1965.
8. D. Voelker, G. Doetsch, Die zweidimensionale Laplace-Transformation Basel, 1950.

Coritinued from inside back cover.
15. G. Birkhoff, 'Picewise Bicubic Interpolation and Approximations in Polygons," In the volume Approximations with special Emphasis on.Spline Functions, Academic Press, N. Y., 1969, p. 206.
16. D. Mangeron, M. N. Oguztöreli, "Fonctions speciales polyvibrantes generalisees," Comptes rendus Acad. Sci. , Paris, 270, 1970, pp. 27-30.
17. D. Mangeron, M. N. Oguztöreli, 'Fonctions speciales. Polynomes orthogonaux polyvibrants généralisés," Bull. Acad. R. Sci. Belgique, s. 5, 56, 1970, pp. 280-288.

[^0]: ${ }^{1}$ According to a written communication from A. Kotzauer (treated there by complete induction).

