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SUMMARY

Sufficient conditions are given for the existence and unity of the solution
of an initial-value problem with linear partial difference equations. From
this, in particular, assertions about the existence of compatibility conditions
between initial values can be derived in case, by the formulation of a prob-
lem (perhaps a discretization of a partial differential equation) or by the
method of solution, more than the required initial values goes into the cal-
culation. With the aid of a two-dimensional operational calculus, certain

applications are investigated.

INTRODUCTION

In the classical work [1] of A. A. Markoff, there is an existence and
uniqueness theorem for partial difference equations of the form

(1 =D

H

X -a X X
m+1,n+1 mn” m,n+1 mn mik,n

(m,n > 0, integral, k fixed natural number) ,

for a desired complex-valued function x = X n with given initial values
X o (m > k) and Xon (n 2 1). The proof is conducted by investigation of
a system of infinitely many ordinary difference equations equivalent to (1).
Here, in Theorem 1, an essentially more general initial-value problem for
linear partial difference equations of arbitrary order will be treated by which
the ideas of Ch. Jordan [2] on the subject are made precise.

The applications in the second part of the work show that the two-
dimensional discrete operational calculus developed in [3] is appropriate to
give in certain cases the solution, determined uniquely according to Theorem
1, in closed form and the possibly necessary compatibility conditions between

the initial values explicitly.
*Translated by P. F. Byrd, San Jose State College, San Jose, California.
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EXISTENCE AND UNIQUENESS THEOREMS

We consider the linear partial difference equation
k,?
= -_— > .
(2) D(x) Z aij Xm+i,n+j bmn (m,n 2 0, integral) ,
k,j=1,0
of order (k,!) with given complex-valued functions

aij = aij(m,n), bmn'

Let k21, £ 21, and for at least one i or j the coefficients a0 2

0j’
a5 akj should not vanish.
The question arises which of the initial values

Xm] G=0,1,""",4 -1)

X G=0,1, ", k-1

should be prescribed so that the function X o 18 uniquely determined by (2)

for all remaining m,n = 0. An answer to this is given by the following:
Theorem 1. The difference equation (2) of order (k,f) possesses ex-

actly one solution if, for all m,n 20,
i = < i = < = i >
(a) o # 0 for j 4 =1 andfor j =1( <{, B 0 for j > g

holds, and the initial values

mj=a:J(n (j=0,1="',ﬁk;j7éﬁo;m20)s
(3) x, =B =01, k-1 1020
io 4
o BJ.

are prescribed, or if

au% 0 for i = ki <k andfor i=ky=<ky

au=0 for i~k

(b)
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holds and the initial values

= o o= cve 0 —1:m >
@ mj ajf“ PEh b tenman, o
X, = Bn =01, -, Kk i# kg nz0) with ai=.3;

are prescribed. For ﬂk = 0 (in the case (a)) or kg = 0 (case (b)) the first
equation of (3) or the second of (4), respectively, drops out.

" Proof. We consider case (a) and solve equation (2) for X4k, n +4, which
is possible because 2y Lo # 0. For m = n = 0, there results, after insert—

ing the initial values (3),

k-1,4 Y

_ ) i j

Ko 1/ 3 2| Poo Z 85485 Z %%
1,j=0,0 =0

s i+,
For £, = 0 and thus £, = 0, the sum Eakjaf% drops out in agreement with

the concluding remark of the theorem. Since ay

# 0, the equation
sﬁk
k-1, et
() Xm+k,n+£k =V ak,/lk bmm - Z aijxm+j,n+jz akj Xm+k,n+j
i,7=0. 0 =0

follows from (2), and there results with (3) the function values X n > ﬂk).

If the function values up to X, (p = 2) are determined, then it fol-

<, L tp-1
lows for 2 < p Sllk that
k1,0 fy~t P
- _ i - j+p
“kayip - Vo0, Pop 2 wfupT 2 kT2 Mk
i,j=0,0 i=ﬂk—p+l =0

For p > o the last sum drops out and the lower limit of the second sum is
set to zero. The elements Xn result analogously for the rows m = k
(the function X on being regarded as an infinite matrix) by use of the ele-
ments standing at hand in the immediate upper k rows, which are given

either by (3) or are determined by (3) and (5).
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For the case (b), one notes that (2) can be solved respectively for
X ntkgontt T Xmak,,ntg because e, 4 #0 or B0 # 0. In an analogous
way as with (a) the function values X o =k m=>ky n21) are de-
termined column-wise.

Theproof of uniqueness of solution istrivial. If there weretwo solutions

X # y in the case (a) and if x for my =k and ng =

my, ny # ymo,no Ek,

while x for m <my and m = m;, n < nyg, then there immed-

mn _ Ymn
iately results from (2), for m = my-k, n = nj - ﬁk because ak,ﬁk # 0,
a contradiction. In case (b), the same holds for n; = £, < zk .

In applications, the case when ¢, = 4 =1 and ky = k; often occurs;
then it follows that ki = k and the distinction between cases is cancelled.
The solution X n of (2) is then uniquely determined by the specification of
k + ¢ initial functions, namely by the first k rows and the first columns.
(See example 19, 20,) Also, if 4 < ¢ or kg <k, occasionally k +¢ initial
values X o0 G=0,°°",2-1), X i=0,°"*, k-1) are considered as
prescribed. Compatibility conditions between these must then exist so that
in the case (a) the ¢ —Zk functions ij G = 20,£k+ 1, -++,£ -1) and in
case (b) the k -k; functions X (i =ky ky+1, -+, k-1) are already
respectively determined by the remaining k + g, or ¢ +k; functions. (See

example 3%, 49, 59,)

APPLICATIONS

In the treatment of the following applications, we make use of the oper-
ational calculus developed in [3]. It is shown there that the set of complex-
valued functions x = X of integral variables m,n with vanishing function
values for m < M and all n for n < N(m), m 2 M (for each function an
integer M exists and a function N(m) ) forms a field by means of ordinary
addition and of two-dimensional Cauchy product as multiplication. The sub-
set D of functions with M = 0 and N(m) = 0 is an integral domain. For

functions x € D, the difference theorem

_ k1?2
Xm+k,n+1 pa an
(6) k-1 0-1 k-1,0-1
2 k-i k 2-j k-i £-j
- Z p Xin -p 2 q ij + P q Xij ’
i=0 j=0 i,j=0,0
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holds, where ij’ Xin and xij can be understood as functions from D
which at least for n = 0 or m = 0 and m = n = 0 possess nonvanishing
function values; p,q are displacement functions from Q, with k,f being
natural numbers.

1%, The equation

3x

m+1,n+1 ~ Xm+2,n =0

Em+2,0+42 ~ *m+1,042 " Fm+2,n+1 "~ xm,n+2 +
(m,n 2 0)
related to Fibonacei numberswas treatedin [4] and [5]. Its solution accord-

ing to Theorem 1 is uniquely determined because
£k=ll=k1=k=2,

if the k+1 = 4 initial values X 00 *m1’ Xon’ X1n (so far as ky = ¢y = 2
is chosen) are prescribed independently of one another. This solution was
represented in [5] in closed form.

20, The equation

2m + n + 3

= — >
*m+1,n+1 ~ Fm+l,n om + 2 m,ner R 2 0)
possesses the solutions!
[~ ¢]
— — m + i+ 2m+n+1 - :nm+n
X—Xm_z:(m )(2m+21+1) and =Y, 2( m )
i=0

Here,

Thus if one chooses f; = kg = 1, then it follows from Theorem 1 that the
equationis uniquely solvable if the initial functions X o0 Xon 2T€ prescribed.
i = = >

Since X 0= Ymo 1 (m = 0) and X,

=y =20 (n>0), itimmedi-
n on
ately follows that x = y, and thus

1According to a written communication from A. Kotzauer (treated there by
complete induction).



318 ON AN INITIAL-VALUE PROBLEM FOR LINEAR [May

o0
Zm+i 2m +n + 1 = oi(m +n m.n = 0.1.°-
m 2m + 21 + 1 m ’ ’

i=0
30, The equation

= >
(7) Xm+3,n + xm,n+2 0 m,n = 0)

of order (3.2) possesses, on account of ﬁk =0<2=1[, ]L(/2 =0<3=k,
exactly one solution from D if either in the case (a) the three initial func-
tions X = ,3111 i = 0, 1, 2) according to (3), or in the case (b) the two
functions xmj = a']m (j = 0,1) are prescribed according to (4). With appli-
cation of the difference theorem (6) there appears, however, k + f =5

initial functions in the operational representation of equation (7):

= = Y (350 2 g1 2 0 1
(8) X = x 5 ®°B) + pPBy + pB + o) +aap ).
With it,
y = P’ {(—Dm/3 for n = 2m/3, n =0,3,"""
P+ 0 otherwise

The required compatibility conditions between the initial functions are, as

result from (8) for n = 0 or n = 1 after easy calculation in the field Q,

i m/3] fm . ) . _{0 for m = 0(3)
©) aJm B ('1)[ Bj+2[m/3] (G =0,1;m 2 0) with €m {1 for m = 1(3)
. 2 for m = 2(3)
or, after B;l is solved,
i n/2] &n . . . _ Yo for n =0 (2
a0 g = 2 2 4= 0,1,2in 2 0) with 5 = 31 P

If one combines the conditions (9) with the representation (8), there results
the solution of equation (7) determined according to case (a) of Theorem 1 in

D, namely,
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_ m/3] €m
(11) S = OO (m,n 2 0),

while in case (b), the solution can be represented with the aid of (10) in de-

pendence of initial functions ij = O[]m (j = 0, 1), in the form

bn

"2 g = D00 [n/2]

(m,n 2 0)

4%, As an example of a discretized partial differential equation, let us

consider the difference equation

(13) =0 (m,n> 0)

z -z -z +
m-+2,n+1 m+1,n+2 m+l,n Zm,n+1

of order (2.2) appropriate for the wave equation z Because ka ky

=2z..
XX tt
= 1, the solution of (13) according to Theorem 1 is uniquely secured if three

initial functions are prescribed, in the case (a) =z , and in the

Z Z
on’ “In’ “mo

case (b), z For kg, £y, only the possibility ky = £, = 1 ex-

mo’ “ml1’ Zon’
ists. A compatibility condition between the four initial functions ij Gj =
0, 1), Zin (i = 0, 1) isthus necessary. One obtains in [6] further evidence
and the proof of existence of a solution from D only after application of an
operational calculus to equation (13) where the initial functions are specially
selected. We again use the difference law (6) with which, for arbitrary initial
¥ = J i = = i i = J = i i.i =
values Zani = %m G=01, z, =8 G=0 1, o BJ. (i,j =0,1),
there results the operational representation

(14) z = pa/(pq - 1)(321' +0d ) +uy(l - ol - vEh + ued)

(u,v in Q inverse to p,q) with

it 0i for n =0 1 0. for m =20
Fo = ﬁiforn>0s(1:0’l)’ “m =)ol for m>0°
and
_ p’q Jm+n+1 for nf<m, m>0 &

Y " o -abpg - D 0 otherwise
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From this, there follows, after easy calculation in @, upon use of

pa/pq - 1) = SmnE D
(5mn Kronecker delta) for n = 0, the required compatibility condition

1 _ gl = g0 _ go >
(15) “m+1 Bm+1 “m 'Bm’ m =z 0.

If one specializes the initial functions according to [6], namely,

(16) 7 =z

m0 =l , z =0, z. = pl

ml m on in n

then (15) transforms to the condition

an o - ;=8 m > 1),

which is equivalent to the equation

given in [6].

With the compatibility condition (15), the solution of (13) can be repre-
sented in dependence on three initial functions. In the case of (@), these are
agn’ B]in (i = 0, 1) and there results

2 =8 (B +ad ) +uy@l - pL o+ B - )

If one carrys out the multiplication (in Q), one obtains finally the solution
z € D in the form

0
Zai = 0 set
1



1971] PARTIAL DIFFERENCE EQUATIONS 321

min(m,n) 1 g, for 0Sm<n,
" = - B0 -
a8 =z . E : Prm+1-21 = Pran-gi) ¥ 0 .
- o for 0<n<m.
i=1 mon

For the special initial functions (16), equation (18) yields

Min (m,n) ) 0 for 0<m<n,
mn Z Bm+n+1-21 a0 for 0<n<m
i=1 m-n

and one easily recognizes with the aid of the special compatibility condition
(17) that this function is in agreement with that given in [6].

59, The linear difference equation of order (1,1) with constant

coefficients
— — = > e
(19) 8% me,n+1 ex o 0 (m,n = 0; a,b # 0)

leads to the operdtor representation

=3  (g_k
(20) X a5 ~bg = o (B 2 uqa)
. e sps . = 0 = = =
with initial functions x_ o a, X Bgl B. On account of the

vanishing of the coefficients x there exists, according to Theorem

m+1;n+1°
1, a compatibility condition between and B. This results from (20),

since, for n = 0,

=.___§.p_._.=$ m _c_mgnfor -m < n<2~o9
Y " ap-bg-c i -nj/\a b -T =7

0 otherwise

m .
1) @ = (g)mz (nl‘)(g)l B, mz0 .
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In the case (a) of Theorem 1 (Xon prescribed), the solution of (19) can be
represented, with the aid of the compatibility condition (21), as a function of

B alone, namely

m .
_fc m m)/b\?
(22) Xmn (E) Z (1)(3) Pha1 & D

i=0

which results, after easy calculationt,
If one eliminates x and « in (20) with the aid of (21) and (22), there

results the operator relation

m ‘ m

-m my, i m-i _ 1 -m mY, -i m-i

a E(i)’” Bnsi = apobgc | 2PP, - baa Z(i)b B
i=0 i=0

(m,n 2 0)

n

which for ﬁn =d (d = constant) changes to

c+bdmn_ 1 n c + bd\™
(2L )d—mq__—c‘(apd—bq(a)) (m,n 2 0) ,

Ifor -m <n<-1

m L
_ fc c -i m i m-1-i\i
Xmn ~ (E) (B) Zc ((-n+i)bﬁ1—< —n—l)aal) ’
i=0
and from (21) and
P 1
rf{p +q -1 r+i}y _ (p+qg+r+ >
L( M )( ; ) ( ) ) (p>q,T 2 0)
i=0
it follows that x =0,

mn
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and, for a = b, ¢ =0, to

1
p-qg

@3) B, = B, - aB,) (m,n 2 0; Bon = B

m-n € D).

A formula analogous to (23) is known in the operational calculus for functions
of two continuous variables (see perhaps [7]; p,q difference operators) in

the theory of two-dimensional Laplace transformation (see [8]).

REFERENCES

1. A. A. Markoff, Differenzenrechung, Leipzig, 1896.

2. Ch. Jordan, Calculus of Finite Differences, New York, 1965.

3. W. Jentsch, "Charakterisierung der Quotienten in der zweidimensional-
en diskreten Operatorenrechnung,' Studia Math., T. XXVI, pp. 91-99
(1965).

4. L. Carlitz, "A Partial Difference Equation Related to the Fibonacci Num-
bers," Fibonacci Quarterly, Vol. 2, No. 3, pp. 185-196, 1964.

5. W. Jentsch, "On a Partial Difference Equation of L. Carlitz,'" Fibonacci
Quarterly, Vol. 4, No. 3, 1964, pp. 202-208.

6. H. Schulte, Ein direkter zweidimensionaler Operaborenkalkﬁl zur Losung
partieller Differenzengleichungen und sein Anwendung bei der numerias—
- chen Lbsung partieller Differential-gleichungen, K&ln 1967.
7. L. Berg, Einfuhrung in die Operatorenrechnung, Berlin, 1965.
D. Voelker, G. Doetsch, Die zweidimensionale Laplace-Transformation

Basel, 1950.
<P

Coritinued from inside back cover.

15. G. Birkhoff, 'Picewise Bicubic Interpolation and Approximations in
Polygons," Inthe volume Approximations with special Emphasis on.Spline
Functions, Academic Press, N. Y., 1969, p. 206.

16. D. Mangeron, M. N. Oguztbreli, '"Fonctions specialespolyvibrantes gen—
eralisees,' Comptes rendus Acad. Sci., Paris, 270, 1970, pp. 27-30.

17. D. Mangeron, M. N. Oguztbreli, '"Fonctions speciales. Polynomes or-

thogonaux polyvibrants généralis’és,” Bull. Acad. R. Sci. Belgique, s.
5, 56, 1970, pp. 280-288.




