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1. INTRODUCTION 

The results in this paper arose from the efforts of the first-named author 
to adapt Horadamfs Fibonacci number triples [3] to generate direction of 
numbers in solid geometry for a multivariable calculus course. This effort 
was unsuccessful in that the equation obtained was true for quadratic d io-
phantine equations in general, but it did not use any properties of the Fib-
onacci sequence. However, it did give rise to some results for higher order 
sequences. 

Horadam [2] , [3] , [4] has studied the properties of a generalized Fib-
onacci sequence defined by 

(1) H ^ = H J_- + H , (n > 1) 
n+2 n+1 n 

with Hi = p9 H2 = p + q. One of the properties he found was that 

( 2 ) ( HnHn+3> + < 2 H n + l H n + 2 ) 2 = ( 2 H n + l H n + 2 + H n ) 2 

Which connects generalized Fibonacci numbers with Pythagorean triples,, 
In the next section of this paper, an analogous result is obtained for gen-

eralized "Tribonacci" numbers* The theorem is then extended to general 
linear difference equations of order r with unit coefficients. 

2* TRIBONACCI NUMBER TRIPLES 

The general Tribonacci series (see Feinberg [1]) is defined by 

( 3 ) Un+3 = Un+2 + U n + 1 + Un> <n * « 

307 



308 A GENERALIZED PYTHAGOREAN THEOREM [May 

with initial values Ui, U2» U3 . 
Theorem le 

(4) (U U ^ + (2(U A1 + U ^ )U l Q )2 = (U2 + 2(U ^ + U AO )U ^ )2 
n n+4 n+1 n+2 n+3 n n+1 n+2 n+3 

Proof, 

u2 M u ^ - l u . + u ±0) )2 

n n+3 n+1 n+2 
= U2 + (U _,, + U ^)2 - 2(U ^ +U ^0)U ^Q n+3 n+1 n+2 n+1 n+2 n+3 

and so 

K + 2<Un+l + Un+2>Un+3 = K+3 + <Un+l + Un+2>2 • 

This gives 

(U2 + 2(U ^ + U l 0 )U ^o)2 
n n+1 n+2 n+3 

<5) = Un+3 + <Un+l + Un+2 )4 + 2<Un+l + Un+2 )Un+3>2 

= K+B ~ <Un+l + Un+2) 2>2 + <2<Un+l + U n + 2 ) U n + 3 ) 2 • 

Now 

( U n + 3 - < U n + l + U n + 2 ) 2 > 2 

( 6 ) = <Un+3 " <Un+l + Un+2> )2 + <Un+3 + <Un+l + Un+2))2 

= u2 u2 

n n+4 

Substitution of (6) in (5) gives the result (4). 
Theorem 2. All Pythagorean triples are Fibonacci triples. 
Proof, Put Uj = x - y5 U2 = y, U3 = 0. Then 

U4 = x and U5 = x + y . 

For n = 1, Eq. (4) becomes 
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(x2 - y2)2 + (2xy)2 = (x2 + y2 )2 . 

For example, when x = 5 and y = 2, we get the triple 20, 21 , 29* 

3. GENERALIZED PYTHAGOREAN THEOREM 

Comparison of (4) with (2) suggests that for a general recurring sequence 
("V } of order r where 

r - 1 

W Vn+r = E Vn+i • <n * « • 
i=0 

witn initial values Vl9 V2? s •8 , Vr , there is a Pythagorean theorem of the 
form 

Theorem 3e 

(V V )2 + (2 V (V - V ) )2 

1 n n+r+1; l n+r l n+r n ; ; 

( 8 ) = (V2 + 2V (V - V ) )2 

lvn . n+r1 n+r n ; ; 

For example, when r = 2, we get 

<Vn W + ( 2 V n + 2 V n + l ) 2 = K + 2 V n + 2 V n+l ) 2 

which agrees with (2). When r = 3, we get 

<VnVn+4>2 + < 2 V n + 3 ^ + 2 + V n + l ) ) 2 

= ^ n + 2 ( V n + 1 + V n + 2 ) V n + 3 ) 2 

which agrees with (4). 
Lemma 1. 

<9> 2 V n + r " Vn+r+l = Vn 

Proof. 
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n+r n+r+1 

= V + V - V 
n+r n+r n+r+1 

= (V - , + V 0 + 9 « - + V ^ + V ) + V v n + r - 1 n+r -2 n+1 n ; n+r 

- ( V + V ., + V « + • • • + V ., ) v n+r n + r - 1 n+r-2 n + l ' 

= V . n 

L e m m a 2. 

(10) 2V _, + V ^ ^ = 4 V X - V 
n+r n+r+1 n+r n 

Proof. This r educes immedia te ly to 

n+r n+r+1 n ' 

which has jus t been proved. 

Proof of Theo rem 3. F r o m L e m m a s 1 and 29 we have 

(2 V - V ., ) (2 V + V ., ) = V (4 V - V ) , v vn+r n + r + 1 / v n+r n + r + 1 ' n v n+r V 9 

which becomes 

4V2 - V2 . = V (4V - V ) n+r n+r+1 n v n+r n ; 

Th is can be r e a r r a n g e d as 

(11) V2 . = V2 + 4V (V - V ) . 
v ; n+r+1 vn n + r x n+r V 

On mult ipl icat ion by V2 and addition of (2V , (V , - V ) )2 to each s ide 
^ J n n+r n+r n 

of (11), the r e su l t in (8) follows. 
F o r example9 when r = 45 we get a " t e t r a n a c c i n s e r i e s [1] and (7) 

becomes 

v = y^ v . 
vn+r £-** n+i 

i=0 
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with Vi = V2 = V3 = V4 = 1, say. Then V5 = 4 , V6 = 7. At the same 
time, (8) becomes 

( 1 2 )
 ( Vn + 2 ( \ + l + V n + 2 + V n + 3 > V n + 4 ) 2 

= <VnVn+5)2 + <2<Vn+l + V n + 2 + V n + 3 ) V
n + 4 ) 2 • 

n = 1 gives the Pythagorean triple 79 24, 25* 
If we call the type of triangle in (8) a recurrence triple, we get 
Theorem 49 All Pythagorean triples are recurrence triples* 
Proof. Put 

Vi = x - y, V2 = y, V3 = V4 = 0 

in (7). Then V5 = x9 Vg = x + j 9 and for n = 1, Eq* (8) becomes 

2 2 
(x2 - y2) + (2xy)2 = (x2 + y2 ) . 

4e CONCLUDING COMMENTS 

The results in Theorem 3 can be used to produce various properties for 
recurrence relations of different orders. For instance! when r = 2 and 
n = m - 1, we get 

(13) 4 (H' - H - - H2 ^ ) = H2 - - H2 ^ , v m+1 m-1 m+1 m-1 m+2 

which, in conjunction with Eq* (11) of [2] , gives 

<14> 4<HL - H U + ^m^ = HL-i - = U • 
where e = p2 - pq - q2* 

For a third-order relation, the property analogous to (13) is 

(15) 4 ( U m + 2 U m _ 1 - U ^ + 2 ) = U ^ - U ^ + 3 . 

This may provide a convenient method for the development of properties of 
third and higher order recurrence relations, which have been studied in a 
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number of papers in the Fibonacci Quarterly in recent years. For earlier 
studies, Morgan Ward [5] provides a useful reference. 
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