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INTRODUCTION

1. In this paper, we will derive a number of identities for the general-
ized Fibonacci sequence {Hn} of Horadam [ 4 | defined by the second-order

recurrence relation

(1.1) Hn 9 = Hn +1 + Hn (n an integer, unrestricted) ,
with initial values
(1.2) Hy = q and Hy = p ,

by the use of generalized (square) Fibonacci matrices.

2. A generalized Fibonacci matrix is a matrix whose elements are gen-

eralized Fibonacci numbers,

3. The technique adopted is basically paralleling that due to Hoggatt and
Bicknell [1], [2], and [3], where we establish numerous identities by exam-
ining thelambda functions or the characteristic equations of certain general-
ized Fibonacci matrices.

4. If we were to proceed as in Hoggatt and Bicknell [1] by selecting the
2-by-2 matrix defined by

(4.1) A = [g * 4 g] ,

which becomes the Q matrix of [1] when g = 0 and p = 1, and where

*Part of the substance of an M. Sc. thesis presented to the University of New
England in 1968,
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iA; = -d where d = p? - pq - ¢ (which is the e of [4]), we would find that
we would be unable to obtain a compact expression for the matrix A"
5. Instead, we commence our investigations by starting with the gener-

alized Fibonacci matrix defined by

H H
(5.1) An — n+1 n
Hn Hn—l
where
, _ )
(5.2) | An' I_In+1 Hn—l Hn
= (-n"a

1.
The matrix An becomes the matrix Qn of [1] when q = 0 and p = 1.

Then the matrix A defined by (4.1) is a special case of An when n

This approach is used throughout this paper where, by changing the powers
of various characteristic equations to suffixes, we are able to develop num-

erous easily verified identities.

THE LAMBDA FUNCTION
6. We adopt the definition of the lambda function A(M) of the matrix M
used by Hoggatt and Bicknell [1] where, if aij is the i - jth element in M,
then

(6.1) A = Iaij + 1' - iaijl

7. Thus, for the Fibonacci matrix An defined by (5.1), we have

H + 1 H +1
(7.1) NA) = n+l n - |44
H_+1 H o+ 1
= Hn—3

on simplification.
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Hence, from (7.1) and the easily verified identity (1) of [1], viz:

(7.2) |ag; *+ k| = [ay] + 20
we have
H +k H +k
+1 n
(7.3) n = M H .-H)+k(H ,+H , -2H )
H +k H Kk n+l n-1 n n-1 n+1 n
n n-1
= |An| +kH_ o

8. For a 3-by-3 matrix, the associated lambda function may be found
more conveniently by the application of a theorem of [1], where, for the

matrix
a b c
M =1]d e f
g h j
1 b c a 1 c a b 1
(8.1) A = |1 e fl + |d 1 fl + |d e 1
1 h j g 1 j g h 1
or
a+e-(+d b+f-(c+e)
(8.2) M) =

d+h- (g +e) e+j-(+1

For example, consider the generalized Fibonacci matrix E, where

jan
)

2p H2p+1 m
(8.3) E =

s

opt1  Hopiz  Hpy

Hopiz  Hopiz  Hpy

so that
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—_ . 2 -
[l = By [y Hoprg = Hup = Hy Hoo + Hy  Hyo
- 2
* HZpH2p+2 H2p+1]
(8.4) = B[ M1 Hopyg — HypHopys]

= (0?®Van_

Il

dH
m

on uging (12) of Horadam [4] where n =2p+1, r =0, and s = 1.
One may evaluate ME) by the use of (8,1) and afew simple column oper-

ations, whence
(8.5) ME) = 4 .

The matrix E defined by (8.3) reduces to the matrix U of [1].

9. Ifwelet k = Hm—l in (7.2), we have

E + Hm_lg [l +u -4

9.

dH_ + dH_

1]

d H1rn+1

Similarly, if we put k = Hn in (7.2), then we have

n+l + Hn 2Hn

2H H + H
n n-1 n

iAni + H MA))

(9.2) lAn ' H“!

so that, by (5.2) and (7.1),
_ n
(9.3) = (-1 + H H

from which we have
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H )n+1

2 =
(9.4) 4Hn H

n+2 Han—S + (-1

ntl " d.

10, From Paragraphs 6 to 9, we can see that it is possible to derive
many identities for the generalized Fibonacci sequence {Hn} by the use of

generalized Fibonacci matrices and the lambda function.

CHARACTERISTIC EQUATIONS

11. As a special case of the generalized Fibonacei matrix

2 2
Hn—l Hn—lHn Hn
= 2 -
(11L.1) Wn 2Hn—ZLHn Hn+1 Hn—lHn ZH1r1Hn+1 ’
2 2
Hn Han+1 Hn+1

when n = 1, we have the matrix W (say) where, on calculation, we have

o pg p
W =W; =}2pg (+q-pa 2pp+a
Lbz plp + q) © + q)? J
whence
(11.2) (Wj = -a

Since the Cayley-Hamilton theorem states that every square matrix satisfies

its own characteristic equation, namely,

IW-M‘ =X -h2-da+d =0,
W satisfies the equation
(11.3) W3 - hw? - dhw + &3 = 0

where h = 2p? + 3pg + 3¢?.
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Hence, from (11.3), we have, on multiplying throughout by Wn’
(11.4) W pw2  anw™ s aw® = 0 .

Now, from the relations

H121+3 - 2H§1+2 - 2H?1+1 * H%l =0
(11.5) H i = 2Hp ol 0 = 2H) G PHH b =0
Hy g = HoypHyyg - 2H) g+ 2H G o - 2H) o +2HH
+ H%1+1 - Hn—-lHn =0

and so on, we can form the matrices W_,,, W_. ., and W , which will
n+3 n+2 n+1

satisfy the recurrence relation

(11.6) W o= 2W o - 2W . +W, =0

adapted from Eq. (11.4) by analogy with the special case for the ordinary Fib-
onacci sequence {Fn} for which p=1, g =0, h=2, d=1.
As a special case of (11.6) for n = 0, we may re-write
(11.7) W3 - 2Wy - 2W; + Wy = 0
in the equivalent form

(11.8) W3 + 3W, + 3Wy + Wy = 5W, + 5W; = 5(Wp + Wy) ,

from which, in general, it can be shown that
2n + 1 2n + 1 2n +1 _ /h
(11.9) ( 0 >W2n+1 * ( 1 )WZn Tt (Zn + 1>W0 =5 Wy g - W)

On equating those elements in the first row and third column, and after using
(9) of Horadam [4], we can deduce the result
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2n-+1
2n +1 _ gD 9
(11.10) Z < : ) = 5N, + H)
i=0
= 5'[(2p - QH - dF
2n+1 2n+1]

12. We can find a number of identities for the generalized Fibonacci
sequence {Hn} by proceeding as in Hoggatt and Bicknell [3] as follows.
Consider the generalized Fibonacci matrix defined by

(12.1) J

where, as a special case of (12.1), we have the matrix

3p + 2q p+aq
Jd = dJy =
-p -4 -q

for n = 1. Since J satisfies its own characteristic equation
(12.2) P -@p+qJ+d =0,

we can show that

(12.3) @ + HD? = Hyd + HyH,I .

This leads to the equations

(12.4) 2@+ HD? = 5T + HyHDD
and
2n
2n-
(12.5) > (21?) pank gk e sy g, D"

k=0
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From the easily verified matrix equation

(12.6) Jy = 33, +Jy = 0

obtained from observation of Eq. (12.2), we have the rearranged equation

(12.7) J2 + 2J1 + JQ = 5J1

In general, it can be shown that the J-matrices satisfy the equation

2n 2n 2n _ . h
(12.8) (0>J2n + (1)J2n—1 + oo +<2m)J° =5 Jn ,
whence
2n
2n _ gh
(12.9) Z<k>Jk =57 .
k=0

Hence, on equating those elements inthe first row and second column, we have

2n

2n _ gh
(12.10) Z (k> Hy =5 Hy .
k=0

13. If we now consider the same auxiliary matrix § as in [3], viz:
_[ 2 1
(13.1) s = [_1 HE

we have, on calculation:

2n+3 2n+1
(13.2) J S

n Hops1  Hapog

I
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By proceeding as in Paragraph 12, we can similarly establish the summation

(13.3) 3 (212) 3.8 =598,

from which we deduce the result
2n
2n _ h
(13.4) Z ( k)H2k+1 =5 H2n+1 :

k=0

Similarly, we can generalize the equation

(13.5) J3 + 3J2 + 3J1 + Jo = 5(J2 + Ji)

so that
2n+1

(13.6) D (an;i- 1)Jk SR C AV 3
k=0

from which we deduce that

2n+1

2n + 1 _ -h
s S (P it = P g+ )
=0
Again, we have the summation
2n+1
2n + 1 _ gh
(13.8) > ( ) )JkS = 5°[J .8 + 3 8]

k=0

from which we have
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2n+1

2n + 1 _ gh
(13.9) 2 < k >H2k+1 = 5 [Hypyg * Hypyy
k=0

Finally, since we may re-write (12.6) in the form
(13.10) J2 - ZJI + Jo = Ji 3

we have, in general, that

(13.11) Z 1k <2£>Jk =3,

so that, as before, we have the summation
2n
k (2n _
(13.12) PIREY <k>H2k = Hy .

=0

Similarly, from the summation

k{2n _
(13.13) 2, D (k>Jks =38
k=0
we deduce the result
2n
k{2n _
(13.14) 2, 1) <k>H2k+1 = Hopa -

k=0



274 SOME PROPERTIES OF CERTAIN [May

FURTHER SUMMATION IDENTITIES

14. As in [3] , we can continue to establish further identities for the

generalized Fibonacci sequence { Hn} by letting

Hynta Hen 3 0]
G S = _ where Sy =
n -H, =H, 4 [0 3
Hynts  Hapa T .
G Si = Si =
n Hynir Hynos |1 -2
- -
(14.1)
B H ]
4n+6 4An+2
GS, = s, =| & 1
2 = = _ 2 =
n Hprz "Hypoo 11
- -
Hpnsr  Hypys
G' S3 = S3 = 13 2
n Hypes  Hypg 2 .1
so that we have
H H_ |
14.2) G = }_ 4n+4 4n
n 3 _H _H
4n 4n-4

As a special case of (14.2) we have, for n = 1, the matrix G which satis-
fies its characteristic equation IG - )\I| = 0, so that

(14.3) G2 - (Tp + 49)G +dI = 0 .
We can easily verify the matrix equation
(].4:-4) GZ - 7G1 + Go =0 N

so that, in general, we have
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2n
jf2n n
14.5 (M, = 5 .
(14.5) Z;) -1 (3) .- e,
J:

Multiplying on the right by the auxiliary matrix Ss (s =0,1, 2, 3) and

equating the elements in the first row and second column gives

jf 2n _ h
(14.6) Z -1) (j >H4j+s =9 H4_n+s

Further, the matrix equation
(14:.7) G‘3 - 3G2 + 3G1 - GO = S(GZ - Gi) N
may be generalized so that we have

2n+1
20 + 1\, _ o .
(14.8) PE ( N A I CAVE
j=0
On postmultiplying by Ss’ we have, therefore:
2n+1
j*1f2n + 1 _ gh _
(14.9) D (-1) ( C ) Egas = 9 Byt~ Hanag) -
j=0

Again, Eq. (14.4) is equivalent to

(14.10) Gy +2Gy + Gy = 32Gy ,

which may be generalized to give

(14.11) D <2jn)(}j = 3% G .
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Postmultiplying by SS leads to the identity

2n _ o2n
(14.12) Z (j>H4j+s =3 Hypts

Similarly, the matrix equation
(14.13) Gs + 3Gy + 3Gy + Gy = 3Gy + Gy) ,
can be generalized, so that we have

2n+1
2n + 1 2n
(14.14) . G, = 3
> (e = e
=0

from which, on postmultiplying by Ss’ we have the final identity

2n+1

2n + 1 _ q2n
(14.15) 2 (7 )H4n+s = 3 [Hyir)es * Hapes]
=0
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